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Evaluation of Silver and Diamond-Like Carbon Coatings 
for Biofouling Mitigation in the Fresh-Cut Industry
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Abstract
Bacterial attachment to equipment surfaces and further biofilm formation is one of the major 
problems in the food industry, particularly in the fresh-cut food industry. Silver and two Diamond-
Like Carbon (DLC) coatings modified by incorporation of silicon (a-C:H:Si or SICAN) or silicon 
and oxygen (a-c:H:Si:O or SICON®) were compared to uncoated stainless steel regarding their 
potential to reduce or inhibit such process. Adhesion experiments were performed using industrial 
process water from a salad washing line, and the same water spiked with the Gram-positive Bacillus 
aryabhattai that was isolated from that line. Results for the industrial water have shown that the 
coatings led to reduced initial bacterial adhesion, even though this reduction was not sustained 
for longer contact times. When the industrial water was spiked with B. aryabhattai, the coatings 
allowed a reduction in both adhesion and initial biofilm formation of about 60%.
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Introduction
Bacteria are part of the indigenous flora of raw materials used for food production, hence it is not 

surprising that they are able to colonize a wide variety of surfaces in food industry settings (e.g. food 
processing equipment, walls and floors, storage tanks) [1]. Adhesion of microorganisms to such 
surfaces often results in further biofilm development, which can lead to a wide range of problems 
such as contamination and spoilage of processed foods, surface corrosion, and deterioration of 
equipment components [2]. Product contamination is of special concern, especially in the fresh-cut 
industry, since it presents a hazard to human health [3]. Additionally, it has been shown that most 
food borne pathogens are able to adhere and form biofilms on food contact surfaces [4]. On the 
other hand, surface corrosion and equipment damage translate into increased costs for the industry 
[5].

Stainless steel has become the most commonly used surface in the food industry during the last 
decades, mainly due to its resistance to extreme temperatures, as well as its good cleanability and 
corrosion resistance [6]. It has been suggested that reducing initial bacterial adhesion is one of the 
most promising strategies to reduce biofouling [7]. As a result, demand for engineered surfaces with 
specific properties that can reduce bacterial adhesion has been the focus of intensive study for the 
past years.

The antimicrobial properties and low toxicity of silver have been recognized for a long time, 
and therefore silver deposition onto surfaces that come in contact with food products has been 
suggested as a good strategy to reduce bacterial adhesion [2]. Hydrogenated amorphous carbon 
(a-C:H), also called Diamond-Like Carbon (DLC) coatings, have also raised great interest among the 
food industry community, mainly due to their excellent thermal conductivity, hardness, as well as 
resistance to wear and corrosion [8,9]. Two types of silicon-doped DLC coatings, SICAN (a-c:H:Si) 
and SICON® (a-c:H:Si:O) have also been demonstrated to be effective in reducing protein fouling on 
heat exchanger surfaces [10]. Using a pure Escherichia coli culture, it was found on previous studies 
that none of these surfaces was able to reduce bacterial adhesion, whereas SICON® was able to reduce 
the amount of biofilm formed over a 24 h period [11, 12]. More recently, SICON® was shown to 
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reduce the short-term growth of an E. coli strain in single-and dual-
species biofilms, as well as the colonization of a Pseudomonas isolate 
after 3 days of incubation [13]. Nevertheless, these studies used either 
pure cultures or a maximum of two microorganisms, and microbial 
growth was evaluated using an artificial medium.

The main goal of this study was to evaluate the potential of 
different surfaces on the reduction of cell adhesion and initial biofilm 
formation using the natural flora present in a salad washing line 
and to observe how that performance was affected by the bacterial 
load of the water (by spiking with a bacterial isolate from that same 
washing line). To mimic the real industrial settings, adhesion and 
biofilm formation assays were conducted at the standard factory 
operation conditions regarding temperature and hydrodynamics. 
Biofilms were formed in agitated 6-well microtiter plates (MTPs) and 
the characteristics of the flow inside the wells were determined by 
Computational Fluid Dynamics (CFD).

Materials and Methods
CFD analysis

The flow behaviour inside the wells was determined using Ansys 
Fluent CFD package (version 14.5). A cylindrical well (diameter of 
34.8 mm and height of 48.3 mm) containing liquid (4 mL of water) and 
gas (air, filling the remaining volume) was built in Design Modeller 
14.5 and discretized into a grid of 62,748 hexahedral cells by Meshing 
14.5. The simulation was performed at a shaking frequency of 160 
rpm and an orbital radius of 4 mm at 5ºC. The two-phase flow in the 
vessel was simulated by the volume of fluid (VOF) methodology [14], 
and the air/water interface was determined by the Geo-Reconstruct 
method [15]. The simulation was performed as previously described 
[16]. After the stabilization of the flow, the average instantaneous 
shear stress was obtained by integrating an instantaneous solution 
over the bottom surface of the well (corresponding to the coupon 
surface). The time-averaged shear stress was calculated by averaging 
the instantaneous shear stress throughout a complete rotation cycle.

Bacteria and culture preparation
The process water was collected from the washing line and 

transported in refrigerated conditions (for 4 h at 4ºC) to the laboratory. 
The bacterial composition of the water was determined as previously 
described [17] and included Rahnella aquatilis, Pseudomonas poae, 
Enterobacteriaceae bacterium, Bacillus aryabhattai, and Pseudomonas 
sp. The bacterial load of that water was of 1.12×105 cells ml-1. From 
the different isolates that were obtained from the washing line, B. 
aryabhattai was selected for this study since it produced the highest 
number of virulence factors, including siderophores, proteases and 
gelatinases [17] and because it may be an early colonizer. A starter 
culture of this microorganism was prepared by inoculating 0.2 l of 
inoculation media [5.5 g l-1 glucose, 2.5 g l-1 peptone, 1.25 g l-1 yeast 
extract in phosphate buffer (1.88 g l-1 KH2PO4 and 2.60 g l-1 Na2HPO4) 
at pH 7.0] with 500 µL of a glycerol stock (kept at -80ºC), as described 
in [18]. Cultures were grown in a 1 l shake-flask and incubated 
overnight at 30ºC with orbital agitation (120 rpm). A volume of 50 
ml from the overnight grown cultures was used to harvest cells by 
centrifugation (10 min, 3202 g). Cells were then washed with saline 
solution (8.5 g l-1 NaCl), and the pellet was resuspended in the process 
water to yield a final bacterial load of 3.4×107 cells ml-1.

Surfaces and cleaning procedure
Round coupons (1 cm diameter) made from electropolished 

stainless steel and stainless steel coupons coated with SICAN 

(a-c:H:Si), SICON® (a-c:H:Si:O) and silver were prepared by the 
Fraunhofer Institute for Surface Engineering and Thin Films 
(Braunschweig, Germany) and a detailed description of the coatings 
preparation method is given in references [19].

Surfaces were disinfected using a protocol that mimics the 
equipment disinfection procedure used in the salad washing industry 
from where the process water was retrieved. Briefly, coupons were 
first placed in a glass beaker containing 150 ml of distilled water 
and stirred for 20 min at 150 rpm (CERTOMAT® BS-1, Sartorius, 
Goettingen, Germany). Next, coupons were soaked with 2% (v/v) 
TEGO® (JohnsonDiversey, Goldschmidt AG, Germany), a commercial 
disinfectant used in the washing line, for 20 min under agitation at 
150 rpm (typical contact time in the washing line). Coupons were 
then aseptically rinsed and immersed in sterile distilled water for 
20 min with agitation to completely remove the disinfectant, thus 
simulating the industrial rinsing.

Adhesion assays 
The disinfected coupons were aseptically fixed at the bottom 

of 6-well MTPs (VWR Internacional, Carnaxide, Portugal) using 
double-sided tape and covered with 4 ml of (i) process water only or 
(ii) B. aryabhattai-spiked process water. Industrial process water was 
used to mimic the processing conditions present in the salad washing 
industry and the B. aryabhattai-spiked process water was used to 
evaluate the performance of the different surfaces in a situation of 
increased microbial contamination of the vegetables (that can occur 
during cultivation or harvest). Plates were then incubated at 5ºC (the 
working temperature in the industry where the water was collected 
from) with agitation (160 rpm, IKA KS 130 basic, Staufen, Germany). 
Coupons were removed from the MTPs at defined time points 
(0.5 and 6 h) and gently dipped into sterile saline solution (8.5 g l-1 
NaCl) to remove loosely attached cells prior to enumeration. Results 
originated from three independent experiments with process water 
samples collected at three consecutive days.

Bacterial cell enumeration
In order to quantify the number of adhered cells, the coupons were 

stained with 4,6-diamino-2-phenylindole (DAPI; MerckMillipore, 
USA) at 0.1 mgml-1 and left in the dark for 10 min. Cells were then 
visualized under an epifluorescence microscope (Nikon Eclipse 
LV100, Japan) incorporating a camera (Nikon digital sight DS-
RI 1, Japan). Images were acquired using a ×100 oil immersion 
fluorescence objective, and a filter sensitive to DAPI fluorescence (359 
nm excitation filter in combination with a 461 nm emission filter). 
At least 10 fields from each coupon were acquired and the number 
of adhered cells per field was counted. The number of bacterial cells 
was then divided by the surface area of the field of view to obtain the 
number of cells per square centimeter.

Data analysis
The total number of adhered cells on each surface was compared 

to the number of cells adhered to stainless steel since it is the most 
widely used surface material in the salad washing industry [20]. Results 
are presented as mean ± standard deviation of three independent 
assays. Statistical analyses were performed using GraphPad Prism 6 
(GraphPad Software, Inc.). Comparisons were made using unpaired 
Student’s t-test (two-tailed) to evaluate if statistically significant 
differences were obtained between stainless steel and modified 
surfaces (Figure 2). Statistical analysis corresponding to each time 
point is represented with an asterisk for a confidence level greater 
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than 90% (P<0.1) and with double asterisks for a confidence level 
greater than 95% (P<0.05). Two-way analysis of variance (ANOVA) 
was performed, followed by Tukey’s multiple comparison test 
between groups.

Results and Discussion
Agitated 6-well MTPs were used for the adhesion and initial 

biofilm formation assays. The flow inside the wells containing the 
surface coupons was analyzed by CFD. The simulation shows that the 
shear stress in the coupon surface is not uniform at any given time 
with maximum shear stresses around 0.2 Pa (Figure 1). However, 
the shear stress field was very uniform during a complete cycle (not 
shown), and the time-averaged shear stress in the coupon surface was 
0.14 Pa. This range of shear stresses can be found in critical zones 
(washing tank corners, valves, pumps, etc.) in industrial plants [21-
25], which is a further confirmation that the conditions used in this 
work mimic the industrial settings.

Bacterial adhesion experiments were performed with industrial 
process water in order to simulate the processing conditions present 
in a salad washing industry. Two time points (0.5 and 6 h) were 
assayed so that distinct phases of bacterial adhesion process, i.e., 
primary, reversible adhesion [26], and initial biofilm formation could 
be observed. Longer contact times were not tested as a 6-8 h cleaning 
interval is typical of the salad washing industry [11].

Cell adhesion results are shown in Figure 2. When process water 
was tested alone (Figure 2a), it was found that the total number of 
adhered cells after 0.5 h was lower on the three surfaces tested than 
on stainless steel (although statistically significant differences were 
only obtained for SICON, P<0.1). The adhesion results at this point 
exhibited a large variability between independent experiments. This 
may be explained by the weak physicochemical interactions between 
bacterial cells and the substratum surface at this early stage of adhesion 
[27] and the fact that the initial adhesion process is reversible [26]. 
Additionally, the large diversity of bacterial species competing for 
the colonization of the surface may result in such variability as on 
different occasions, different types of bacteria may reach the surface 
first and prevent adhesion by other bacteria. At a later time point 
(6 h), only silver seemed to exhibit slightly better performance at 
inhibiting cell adhesion, even though not at a statistically significant 
level. At this point, the reversible character of the bacterial-surface 
interaction is decreased, and this may explain the lower variability in 
adhered cells obtained at this stage.

Besides testing the natural flora from the process water, we also 
wanted to evaluate the performance of the surfaces when challenged 
with a much higher microbial load (300-fold higher). For this test, 
we have spiked the process water with a B. aryabhattai isolate from 
the same process line. The results shown in Figure 2b demonstrate 
that all the surfaces performed better than the standard stainless 
steel at both time points, although the differences obtained at 0.5 h 
are not statistically significant. After 6 h, reductions in the number 
of adhered bacteria were of approximately 60% when compared 
to stainless steel. The results suggest that the performance of the 
modified surfaces is increased at higher bacterial loads, and since B. 
aryabhattai is present at a much higher concentration in this spiked 
water, it is likely that it may be an early colonizer in these conditions. 
If this is true, this isolate may protect the surfaces from colonization 
by other organisms, which may also be competing with the isolate 
for nutrients and space, thus reducing the overall cell count in these 

conditions as it can be seen when comparing Figure 2a and Figure 
2b. This protective effect was already demonstrated with another 
industrial isolate (Pseudomonas grimontii) using the same DLC 
coatings and E. coli as a model pathogen [13]. Although the bacterial 
load used in this spike test is much higher than one can typically 
find in the washing line, such level of bacterial concentration has 
actually been reported on the factory from where the process water 
was retrieved, especially during periods of intense rainfall when mud 
accumulation in the vegetables leaves is higher. Additionally, the flow 
velocity in critical process areas like corners or joints is very low [25], 
which can lead to a several-fold increase in cell concentration due to 
sedimentation [28] in quasi-stagnant flow.

Conclusion
To the best of our knowledge, this is the first study that evaluates 

silver and DLC coatings in conditions that mimic the settings of a 
standard salad washing industry in terms of bacterial composition, 
growth conditions, and hydrodynamic regime. Given the cost of these 
coatings [29], it is likely that their use may be restricted to specific 
critical process areas (e.g.,  crevices, corners, joints and valves) which 
are harder to clean and where lower fluid velocities may be found, 
making these zones suitable niches for biofilm accumulation and 
growth [11]. The results presented in this work also show that such a 
capital investment may be more appropriate for processes subjected to 
high microbial loads where significant reductions in bacterial counts 
were observed, leading to a higher hygienic level of the process.

Figure 1: Wall shear stress (WSS) field at the coupon surface obtained by 
CFD simulation.

Figure 2: Number of adhered cells on each tested surface [SICAN ( ); 
SICON® ( ); silver ( ); and stainless steel ( )] after 0.5 and 6 h in: a) 
industrial process water, b) B. aryabhattai-spiked industrial process water. 
Results are shown as mean ± standard deviation of three independent 
experiments. Significant differences from the control surface (stainless steel) 
for the same time point are depicted as *(P<0.1) or **(P<0.05).
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