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Short Communication
Cancer is one of the major diseases causing human death. With today advancement of medical 

technology, the current treatment is still not good enough to cure the disease. Although current 
cancer treatment could suppress the disease, relapse is the common phenomenon leading to 
treatment failure. Profiles of gene expression have indicated cell cycle dysregulation is a token of 
disease development and poor prognosis [1]. Current treatment strategy would use the induction of 
cell cycle arrest to promote apoptosis of cancer cells [2-4]. The ability to manipulate the cell cycle is 
critical for the success of cancer treatment.

Various anti-cancer agents would exert their action via the cMyc/p53 and AKT/14-3-3 
signaling pathways [5,6], inhibition of p38 mitogen-activated protein kinase (MARK) [7], with 
[2,8] or without [9] inducing endoplasmic reticulum (ER) stress for the promotion of apoptosis. 
Chemotherapeutic agents would introduce stress condition causing DNA damage leading to cell 
cycle arrest [10], in which DNA damage is one of the critical determinants to induce p53 signaling 
pathway [11], and other pathway independent to p53 via protein kinases ATM/CHK2 pathway [12]. 
DNA damage caused by Top II poisons targeting topoisomerase II have been frequently applied to 
cancer treatment [13]. Chemotherapy or radiotherapy induced DNA damage activates the Chk1-
dependent DNA damage response (DDR), which accompanied with the phosphorylation of ATM, 
Chk2, p53 and histone H2AX was observed [14]. As the decrease of mitochondrial membrane 
potential with the upregulation of Bax and downregulation of Bcl-2, it suggests the activation of the 
mitochondrial pathway is involved [11].

When the ROS is increased by reducing GSH caused by cysteinase would lead to cell cycle 
arrest and death in cancer cells [15]. Chrysophanol caused necrotic cell death in Hep3B cells also 
accompanied with the promotion of ROS level and Ca2+ production, decrease in mitochondrial 
membrane potential and ATP levels [16]. Using Zearalenone to induce cell cycle arrest and cell 
apoptosis was associated with ROS generation causing ER stress and activates the ATP/AMPK 
pathway to induce apoptosis [17]. The toxicity caused by heavy metal Cr(VI) accompanied with the 
reduced activities of mitochondrial respiratory chain complex I and II leading to ROS accumulation. 
It caused ATP depletion and cell cycle arrest that can be reversed by antioxidant N-acetyl-L-cysteine 
[18]. The use of ROS generation in clinical therapy known as photodynamic therapy is already 
adopted for cancer treatment [19].

Proton leak is a physiological phenomenon in which electron and proton are detoured from 
their original pathways of electron transport chain leading to the reduction of ATP production 
and ROS level. Although there is not a lot of studies directly on the relationship of proton leak in 
cancer treatment, proton leak determines the level of ROS, which plays a modulating role in cancer 
treatment strategy. Cancer cells are found to have upregulated expression of UCP2, which increase 
the antioxidant UCP2 mediated proton leak decreasing ROS and leading to drug resistance. When 
the level of UCP2 mediated proton leak was suppressed, it would increase ROS level improving the 
chemo-sensitivity of cancer cells to cisplatin treatment [20]. UCP2 is often overexpressed in drug 
resistant cancer cells, which moderates the ROS levels and limits drug toxicity. Glutathionylation of 
UCP2 deactivates proton leak through UCP2, which can serve as a therapeutic strategy for cancer 
treatment [21].

Increase in proton leak would reduce the production of ATP, which would affect the energy 
status of the cells. It negatively affects to the necessary energy processes in body. ATP is known to 
play a critical role in cell arrest and cell proliferation. ATP depletion is associated with the inhibition 
of cell proliferation [22], and the activation of AMP-activated protein kinase (AMPK) leads to cell 
cycle arrest [23,24]. Inhibition of basal glucose transport decreases the metabolic generation of ATP 
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would induce cell cycle arrest, senescence and necrosis in cancer cells, 
while adding ATP extra cellularly would save the cancer cells being 
treated with chemical [25]. The study has suggested the importance 
of intracellular ATP in the mechanism of cancer treatment. The 
promotion of ATP level by drug would increase the cell size and 
mitochondrial content [26]. Applying ATP synthase inhibitor 
citreoviridin to ectopic ATP synthase induced cell cycle arrest and 
inhibited proliferation in lung adenocarcinoma cells. [27]. Although 
UCP2-transfected Hepa 1-6 cells did not show reduced cellular ATP, 
it increased levels of glutathione with less proliferative and most cells 
blocked at the G1 phase. The effect of UCP2 on cell cycle arrest could 
not reversed by adding ATP or oxidant supply [28]. For antioxidant 
Carnosine, it decreases both ATP and ROS, but still induces cell cycle 
arrest [29]. The reduction of mitochondrial oxidative metabolism 
is an important bioenergetic phenomenon that characterized in 
malignancy, which may have an adaptive role in carcinogenesis. 
Targeting mitochondrial respiration is a promising strategy for 
cancer treatment [30].

Relapses are the major barrier of cancer treatment. Recent findings 
have suggested the involvement of cancer stem cells (CSCs) in the 
process. Population of CSCs is found to be resistant to chemotherapy. 
Many cases of treatment failure in breast cancer patients induced by 
the chemo-resistance of CSCs were reported. It is suspected the stem 
cell like cancer cells playing an important role of disease relapses. 
Theoretically, stem cell like cancer cells is in dormant stage, they very 
likely escape from the severe damage caused by the radiotherapy and 
chemotherapy treatment. The survived CSCs hiding in the tissue 
would wait for the suitable condition to arrive before they would 
proliferate again and cause metastasis. 

One of the possible problem of the current treatment method 
may be due to the overstress of killing tumor cells and less focus on 
the eradication of CSCs. If CSCs would behave as the normal stem 
cells with their role to maintain homeostasis, CSCs would help 
to repopulate the tumor, whenever the tumor cells population is 
reduced by cancer treatment. It would be the possible mechanism of 
recurrence [31]. CSCs would be the key factor to drive the growth and 
metastasis of tumor, and has the ability of initiating tumor formation, 
self-renewal and differentiation into tumor-propagating cells [32].

The involvement of CSCs in the communication between 
neoplastic cells and normal cells leading to the suppression of immune 
systems was reported. Exosomes, vesicles of endosomal origin, are 
reported to be secreted in prostate and breast cancer stem cells, which 
serve to communicate with neoplastic cells and normal cells leading 
to the suppression of immune systems, regulation of neoplastic 
growth and metastasis [33]. There is a strong connection between 
autophagy and exosomes released from CSCs [33]. Mechanisms that 
regulate wound healing and inflammation have been associated with 
the growth and transformation of malignant cells, and the increase 
of CSCs populations. The mechanical properties of epithelial to 
mesenchymal transition (EMT) in cancer cells have been identified to 
be one of the modulators to determine the effectiveness of treatment 
[34]. As CSCs are highly resistant to current treatments, it would help 
to repopulate the tumor after treatment, which is the major cause of 
local and systemic recurrences [35]. 

Although CSCs have been recognized to play an important 
role in relapses, their regulation at molecular level is not clear. It 
is anticipated the regulation would respond to the extracellular 
signals, mutations and epigenetic control [36], upon which a myriad 

of signaling pathways was sent leading to different kinds of gene 
expression in CSCs [36]. Some of the inherent signaling pathways in 
embryogenesis, development and hemostasis e.g. Wnt, Hedgehog, 
and Notch pathways are found to be dysfunction in various types 
of tumor and malignancies. The activation of signaling pathways 
Notch, Wnt/β-catenin, TGF-β, Hedgehog, PI3K/Akt/mTOR and 
JAK/STAT pathways are associated with treatment resistance and 
recurrence [37]. Atypical activation of these pathways may involve 
in the modulation of CSCs [38]. Irregular expression of miRNA is 
also reported to occur in CSCs, and the abnormal miRNA may be 
promising therapeutic targets [39]. Reversing the downregulation of 
miR-489 [40] in CSCs improves the chemotherapy.

CSCs are emerging as a promising target for the development of 
translational cancer therapies. Understanding the biology of CSCs 
and characteristics of their microenvironment would help to develop 
specific therapeutic strategies to combat cancer [41]. Dopamine 
may destroy CSCs, as it significantly improves the effectiveness of 
sunitinib in treating the drug-resistant breast cancer [42]. Several 
promising approaches targeting on CSCs have been explored 
including targeting the surface markers to block the necessary 
signaling pathways of CSCs, promoting the differentiation of CSCs, 
modifying the microenvironment that may nurture CSCs, and 
inhibiting ATP-driven efflux transporters [43], immunotherapeutic 
approach targeting on the CSCs associated antigens, developing 
metabolites to destroy CSCs, and using RNA/DNA interference small 
molecules to target CSCs [37]. Park and Choi [44] have suggested a 
novel platform for metastatic cancer treatment. Prodrug is used to 
activate enzyme or anticancer cytokine to promote the expression 
of stem cells, which successfully alleviate the proliferation of cancer 
cells [45]. Using engineered viruses to express anticancer genes and 
specific cancer targeting molecules provides an alternative ways to 
treat metastatic cancer.
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