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Neuronal Cell Death or Survival in Hypoxia
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Editorial
Hypoxia, which is defined as shortage in an organ’s oxygen supply, is a putatively lethal stressor 

for cells with high energy demands such as neurons and glial cells comprising the neural tissue. Over 
the years there has been rigorous and extensive research in respect to which cell death pathways 
are activated during a hypoxic insult. Three major cell death types are recognized, based on the 
distinct morphological features of each: apoptotic death, necrotic death and autophagy mediated 
death. Apoptotic death exhibits nuclear condensation, DNA fragmentation, cytoplasm shrinkage 
and at the final stages the cell dissolves into apoptotic bodies. Autophagic cell death, which can be 
characterized as “autophagy gone awry”, presents extensive vacuolization of the cytoplasm due to 
increased presence of autophagosomes leading to cellular degradation. Necrotic cell death, once 
thought to be a chaotic procedure, nowadays is recognized as an organized cellular fate that presents 
itself with the presence of dead cells lacking the hallmarks of the above two types of death [1]. While 
the end result of each death process might be morphologically distinct, there are common molecular 
underpinnings and cross talk between them [2]. Futhermore, the current knowledge proposes that it 
should be taken into consideration that the same cell death “phenotype” might be a result of different 
cell death subroutines at play such as mitochondrial permeability transition driven necrosis (MPT-
driven necrosis), ferroptosis, parthanatos and lysosome-depended cell death [3].

Many diverse models are employed to study hypoxia in vivo and in vitro. In vivo studies using 
“stroke-like” models report that at the infarct site there is formation of a necrotic center surrounded 
by an apoptotic penumbra, although there are also reports of penumbral autophagic cell death [4-
7]. In vivo models reveal more about the mechanics of neuron death under hypoxic conditions. 
Hypoxia imposes an increased need for correct protein folding, mobilizing the cell’s unfolded 
protein response mechanism and activating autophagy [8]. Hypoxia can also cause neurons to 
release abnormal quantities of the excitatory neurotransmitter glutamate affecting nearby neurons. 
Excess extracellular glutamate concentrations can overactivate glutamate receptors, causing an 
increase in cytoplasmic calcium concentration [9]. As glutamate concentration increases, oxidative 
toxicity can arise by the interference of glutamate with glial glutathione production and hence 
lowering neuronal antioxidant potential making them more vulnerable to reactive oxygen and 
nitrogen species [10,11]. Reduction in neuron’s glutathione content has also been associated with 
ferroptosis, a death subroutine depending on iron ion availability, that gives a necrotic phenotype 
[12-14]. The aforementioned increase in cytoplasmic calcium concentration, alongside with 
reactive species can lead the cell to another type of necrosis called Mitochondrial Transition Pore 
driven necrosis, where mitochondrial pore failure is the main mediator of the forthcoming demise 
[15,16]. Furthermore, reactive species can initiate parthanatos in neurons, a caspase independent 
apoptotic like death characterised by overactivation of poly (ADP-ribose) polymerase 1 (PARP1) 
and subsequent nuclear DNA fragmentation [17,18].

On a molecular “executor” level, three classic classes of proteases are implicated in the final death 
decision: caspases, known for their role in apoptosis, calpains, calcium depended proteases, and 
lysosomal cathepsins. While caspases are key players in apoptosis, they can modulate autophagic 
response by cleaving autophagy mediators either halting or priming the cell for it [19,20]. On its 
turn autophagy can inhibit apoptosis [21]. Caspases and calpains have also an intimate relationship 
in which they can activate each other, but also calpains are capable of deactivating caspases [22]. 
Calpains have also been reported to cause lysosomal rupture, releasing cathepsins to the cytosol 
leading to necrosis [23]. Finally, the released cathepsins can effect caspases, cleaving them and 
activating them [24].

Drawing from the above information, one can conclude that neuronal cell death or survival in 
hypoxia should be addressed in the context of the accumulated knowledge with respect to cell death 
pathways and to the extent of their mobilization and the conditions of each experimental approach 
employed researching neuronal hypoxia.
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