
Journal of Neurology Forecast

2019 | Volume 2 | Edition 1 | Article 1005ScienceForecast Publications LLC., | https://scienceforecastoa.com/ 11

The Inhibition of Serum Cholinesterases by Cannabis sativa 
and/or Tramadol
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Abstract
We aimed to compare serum Acetylcholinesterase (AChE) and Butyrylcholinersae (BChE) in rats 
treated with Cannabis sativa resin, tramadol or both. The extract of Cannabis sativa was obtained 
from the dried resin of the plant by chloroform treatment. Δ9-Tetrahydrocannabinol (Δ9-THC) 
content of the extract was quantified using gas Chromatography-Mass Spectrometry (GC-MS). 
The doses of cannabis extract were expressed as Δ9-THC content of 5,10 or 20 mg/kg. Cannabis 
resin (5,10 or 20 mg/kg), tramadol (20,30 or 40 mg/kg) or cannabis resin (20mg/kg) combined with 
tramadol (30 or 40 mg/kg) were subcutaneously administered daily for 4 weeks. Results indicated 
that cannabis resin extract inhibited both AChE and BChE in serum in a dose-dependent manner. 
Significant decrease in serum cholinesterases was also observed after treatment with tramadol and 
by the cannabis-tramadol combination. A significant and positive correlation was found between 
serum AChE and BChE. It is suggested that this inhibition of cholinesterases in serum could be a 
biomarker for a neurotoxic action in individuals who abuse these drugs.
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Introduction
Hydrolysis of the neurotransmitter acetylcholine is accomplished by two cholinesterases; 

acetylcholinesterase, also known as true acetylcholinesterase (EC 3.1.1.7) and butyrylcholinesterase 
(EC 3.1.1.8), also called or pseudo or plasma cholinesterase. Both enzymes hydrolyze acetycholine 
but with differing specificity and are distributed ubiquitously [1,2]. Acetylcholinesterase (AChE) 
is found in neuronal synapses, neuromuscular junction, and cerebrospinal fluid, on the outer 
membrane of erythrocytres, lymphocytes and platelets. The enzyme is important in the termination of 
cholinergic neurotransmission by degrading acetylcholine in the synaptic left. Butyrylcholinesterase 
is found together with AChE in neuronal synapses, motor endplate, muscle fibers, heart and plasma 
but its exact physiological function is not yet fully established [3]. Cholinesterases are target for 
carbamates and organophosphorus pesticides and nerve gas agents and inhibition of AChE results 
in accumulation of acetylcholine and cholinergic excitation with the emergence of the symptoms 
and signs characteristic of excessive central and peripheral cholinergic activity [4,5]. Measuring 
cholinesterases in plasma is widely used as a reliable measure for exposure to these chemicals and 
other cholinergic toxicants [6].

Cannabis sativa, the most commonly used illicit substance Worldwide [7] is well known for its 
recreational usage, causing mild euphoria, relaxation, a sense of well-being, and intensification of 
sensory experiences [8]. These effects of cannabis are mediated by its main psychoactive constituent 
delta-9-Tetrahydrocannabinol (∆9-THC) acting on cannabinoid CB1 receptors [9]. The long-term 
use of cannabis, however, is associated with memory problems and cognitive decline and these 
appear to persist after abstinence [10-12]. There are also grey matter volume changes in brain of 
cannabis users [13,14]. Tramadol is a centrally acting analgesic, possessing weak µ-opioid receptor 
agonist effect. The agent also inhibits serotonin and noradrenaline-reuptake [15]. The drug has 
gained recent interest in view of its popularity as a drug of abuse among adolescents [16,17]. The 
neurotoxic effects of tramadol are not well known, but neuronal degeneration and decreased 
astrocytic cells in  cerebral cortex have been found in rats after 30 mg/kg of tramadol [18].

Previous studies investigating the effect of cannabis and/or tramadol on brain AChE and serum 
BChE found inhibitory effect for these agents on serum BChE but not on brain AChE [19]. The effect 
of cannabis on AChE in serum is, however, not known. The present study was therefore designed 
to investigate the effect of Cannabis sativa and/or tramadol on their ability to inhibit serum AChE 
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compared with BChE.

Materials and Methods
Animals

Male Sprague-Dawley rats, weighing between 130-140g were 
used. Rats (from Animal House of the National Research Centre, 
Cairo) were group-housed under temperature-and light-controlled 
conditions with free access to standard laboratory rodent chow and 
water. The experimental procedures were performed in compliance 
with the institutional Ethics Committee and with the guidelines of the 
National Institutes of Health Guide for Care and Use of Laboratory 
Animals (Publication No.85-23, revised 1985).

Drugs and chemicals
Cannabis sativa resin (hashish) and tramadol were kindly 

provided by the Laboratory of Forensic Sciences of the Ministry of 
Justice (Cairo, Egypt). Other chemicals and reagents were of analytical 
grade and obtained from Sigma Chemical Co. (St. Louis, MO, U.S.A).

Preparation of cannabis resin extract
Cannabis resin extract was prepared from the dried resin 

of Cannabis sativa (Family Cannabaceae L). The extraction was 
performed using chloroform according to the method of Turner 
and Mahlberg [20] with modification. In brief, 10g of the resin 
was grounded in a mortar, subjected to oven heat (100°C) for 1h 
to decarboxylate all its cannabinolic acids content. The resin was 
extracted in chloroform overnight and then filtered. The filtrate 
was evaporated under a gentle stream of nitrogen, stored at 4°C and 
protected from light in an aluminium-covered container. One gram 
of the residue (dry extract) was suspended in 2% ethanol-saline. Δ9-
Tetrahydrocannabinol (Δ9-THC) content was quantified using Gas 
Chromatography-Mass Spectrometry (GC-MS). The resin contained 
~ 20% Δ9-THC and 3% CBD.

Study design
Rats were randomly allocated into ten different treatment groups 

(six rats each). Group 1 received the vehicle (0.2 ml saline) daily. 
Group 2-4 received Cannabis sativa resin at the doses of 5,10 and 20 
mg/kg, subcutaneously daily. Groups 5-7 received tramadol at doses 
of 20, 30 and 40 mg/kg subcutaneously daily. Groups 8, 9 received 
Cannabis sativa resin at 20 mg/kg in combination with tramadol at 
30 or 40 mg/kg.

Determination of acetylcholinesterase activity
At the end of the experiments, blood samples were obtained 

from the retro-orbital venous plexus, under ether anaesthesia. 
Acetylcholinesterase activity was determined by a modification of 
the method of Ellman et al [21]. As described by Gorun et al [22]. 
The principle of the method involves measurement of the thiocholine 
produced as acetylthiocholine is hydrolyzed. The color was read 
immediately at 412nm.

Determination of butyrylcholinesterase activity
Butyrylcholinesterase activity was measured using a commercially 

available kit (Biodiagnostic, Egypt). Cholinesterase catalyzes the 
hydrolysis of butyrilthiocholine into butyrate and thiocholine. The 
thiocholine reacts with Dithiobis-Nitrobenzoic acid (DTNB) forming 
a colored compound. The increase in absorbance in the unit time 
at 405nm is proportional at the activity of the cholinesterase in the 
sample [21].

Statistical analysis
Data are expressed as mean ± SE. Data were analyzed by one-

way analysis of variance, followed by Duncan's multiple range tests 
for post hoc comparison of group means. Correlation between AChE 
and BChE was done using Pearson’s correlation coefficient. Effects 
with a probability of p<0.05 were considered to be significant.

Results
Results are shown in Table 1.

Acetylcholinesterase
Both agents significantly inhibited AChE in a dose-dependent 

manner, although cannabis-tramadol combination was more 
effective than cannabis or tramadol alone in decreasing serum 
AChE. Cannabis resin extract at doses of 10 or 20 mg/kg produced 
a significant inhibition of serum AChE (-34.3 for 10 mg/kg, -35.1% 
for 20 mg/kg, as compared to saline control). Meanwhile, tramadol 
given at 30 or 40 mg/kg caused 26.9% and 40.3% inhibition of AChE. 
On the other hand, treatment with cannabis 20mg/kg in combination 
with either 30 or 40 mg/kg tramadol resulted in more significant 
attenuation of AChE by -47.0% and -52.2%, respectively compared 
with the saline control group (Table 1).

Butyrylcholinesterase
Cannabis resin alone at a dose of 5,10 and 20 mg/kg caused 

significant inhibition in serum BChE activity by -35.6%, -39.2% and 
-45.1% compared to the saline control group. Serum BChE activity 
was also significantly decreased by tramadol at 20,30 or 40 mg/kg 
by -32.3%, -35.1%, and -36.3%, respectively and following treatment 
with both cannabis resin and tramadol by -38.7%, -43.9%, respectively 
(Table 1).

Serum AChE was positively correlated with BChE in rats treated 
with cannabis, tramadol or their combination (r = 0.507; p<0.001).

Discussion
In this study, we have shown that treatment with cannabis resin, 

tramadol or both cannabis and tramadol significantly attenuated 
serum AChE and BChE, suggesting an inhibitory action for the two 
agents on the activity of serum cholinesterases in the rat. The study 
thus confirms and extends our previous findings of an inhibitory 
effect for these gents on serum BChE [19]. In the present work, 

Saline Cannabis 5 
mg/kg

Cannabis 10 
mg/kg

Cannabis 20 
mg/kg

Tramadol 20 
mg/kg

Tramadol 30 
mg/kg

Tramadol 40 
mg/kg

Cannabis 20 mg/
kg + tramadol 30 

mg/kg

Cannabis 20 mg/
kg + tramadol 40 

mg/kg

AchE 1.34 ± 0.05 1.08 ± 0.3
(-19.4%)

0.88 ± 0.09*

(-34.3%)
0.87 ± 0.06*

(-35.1%)
1.40 ± 0.07

(4.5%)
0.98 ± 0.09*

(-26.9%)
0.80 ± 0.07*+

(-40.3%)
0.71 ± 0.07*#

(-47.0%)
0.64 ± 0.08*+#

(-52.2%)

BChE 956.09 ± 
29.51

615.44 ± 
44.55*

(-35.6%)

581.37 ± 29.79*

(-39.2%)
526.87± 43.87*

(-45.1%)
647.23 ± 33.77*

(-32.3%)
620.0 ± 28.56*

(-35.1%)
608.63 ± 34.22*

(-36.3%)

585.92 ± 34.68*

-
(-38.7%)

535.95 ± 33.12*

-
(-43.9%)

Table 1: Acetylcholinesterase (AChE) and Butyrylcholinerase (BChE) in cannabis and/or tramadol-treated rats.

Units for AChE: µmol SH/ml/min. Units for BChE: U/l. Asterisks indicate significant change from saline control or from the tramadol 10mg/kg treatment group (p<0.05). 
The plus sign indicates significant change from the tramadol 40mg/kg treatment group. The # sign indicates significant change from the cannabis 5mg/kg treatment 
group. The percent inhibition from the saline control group is shown in parenthesis.
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however we investigated the effect of higher doses of tramadol 
alone or combined with high dose cannabis. The significance of the 
present findings is yet to be established. In blood, BChE activity is 
restricted to serum, while AChE is attached on the outer membrane 
of erythrocytres [23]. Because of the ease and accuracy of the assay, 
plasma or serum cholinesterase measurement is routinely used as a 
reliable marker for exposure to organophosphorus insecticides and a 
variety of environmental toxicants [24,25]. It is also largely acceptable 
that a significant inhibition in blood cholinesterases in subjects 
exposed to a chemical represents a potentially hazardous event 
and/or denotes toxicity of this chemical [2,23]. The physiological 
functions of serum and erythrocyte cholinesterases are unclear [23]. 
Serum BChE degrades drugs e.g., succinylcholine, physiostigmine, 
cocaine, amitriptyline, scavenges and subsequently detoxify a 
number of naturally occurring and synthetic anti-cholinesterases 
e.g., organophosphate and carbamate inhibitors [25]. A role in 
protection from natural and synthetic anti-cholinesterases has 
thus been suggested; scavenging these toxicants by BChE would 
protect AChE from inhibition [3,23,26]. It follows that inhibition 
of serum cholinesterases by drugs of abuse as shown in this study 
would render subjects susceptible to low concentrations of these 
anti-cholinesterases, and possibly enhancing their toxicity. One 
notable example is the link between exposure to organophosphate 
insecticides and the increase in the risk for developing Parkinson’s 
disease. It is thus possible that a decrease in the activity of serum 
cholinesterases by these drugs of abuse could result in increased 
neurodegeneration in subjects exposed to insecticides. Another 
example is cocaine toxicity where mice lacking carboxylesterase and 
BChE showed increased cocaine toxicity [27]. Marijuana results in a 
significant increase in peak cocaine levels in plasma of recreational 
drug users by increasing the absorption of cocaine [28]. It could be 
also that inhibition of the cocaine degrading enzyme BChE in serum 
that accounts, at least partly, for the increase in the plasma level of 
cocaine by smoking marijuana. It is also worthy to mention that the 
depression in serum AChE and BChE does not necessarily imply 
the development of cholinergic toxic manifestations, nor the extent 
of damage to the nervous system [24] and it is inhibition of AChE 
at the cholinergic synapse that results in the toxicity effects seen in 
organophosphate and carbamate poisoning [4]. It is also suggested 
that organophosphorus pesticides have direct action on post-synaptic 
ACh receptors [29].

Several terpenoids e.g., pulegone, limonene, and limonene oxide 
in the cannabis plant have been reported to inhibit AChE in vitro [30]. 
Interestingly, the main cannabinoid and psychoactive constituent in 
cannabis, ∆9-THC has been shown to cause competitive inhibition 
of AChE by binding to the anionic site of the enzyme [31]. This 
latter effect of ∆9-THC could explain the unexpected finding of 
cannabis extract protecting against the deleterious effects of the 
organophosphate pesticide malathion in the rat [32], possibly by 
competing with malathion at the AChE enzyme.

On the other hand, drugs that inhibit cholinesterase, have 
therapeutic roles in several human aliments e.g., Alzheimer’s disease, 
Down’s syndrome, and myasthenia gravis. Alzheimer’s disease, the 
most common cause of age-related dementia worldwide is associated 
with brain cholinergic hypofunction. Thus, drugs with cholinesterase 
inhibiting properties e.g., donepezil, galantamine and rivastigmine 
are in use in these patients with the aim to enhance the cholinergic 
brain function by increasing the amount of acetylcholine available 
for the post-synaptic acetylcholine receptors [33]. It is not clear, 

however, if the inhibition of serum cholinesterases by cannabis or 
tramadol could be extended to the brain. The effect of cannabis or 
∆9-THC on cholinergic neurotransmission is important in view of the 
ability of the herb or its main psychoactive constituent on memory 
and cognitive functions. Studies have reported variable effects for 
cannabis or ∆9-THC on brain acetylcholine. Thus Δ9-THC was 
reported to increase acetylcholine [34], inhibit 3H-ACh synthesis 
[35] or reduce acetylcholine release in rat brain [36]. Moreover, we 
have found increased AChE activity in rat brain after cannabis resin, 
but not tramadol [19]. Nevertheless, cannabis or tramadol have been 
shown to impair memory and to cause neuronal degeneration [18,36-
39], suggesting no benefit from the alterations in brain acetylcholine 
by these agents. On the contrary, it is suggested that alterations in 
cholinergic neurotransmission by these drugs of abuse could be one 
factor underlying their memory impairing effects [19,38].
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