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Editorial
The primary goal in developing therapeutic delivery systems is to improve the stability of 

therapeutic agents against chemical/enzymatic degradation, while prolong, localize, enhance 
drug efficacy and minimize side effects [1]. For these purposes, a variety of polymeric based 
drug delivery systems including nanoparticles [2], micelles [3], conjugates [4], nanofibers [5], 
microneedles [6], nanogels [7] and hydrogels [8], have been developed with different focuses. For 
example, nanoparticles were used as drug carriers to alter the biodistribution of chemotherapeutics 
[9], conjugation of poly(ethylene glycol) were used to improve drug pharmacokinetics [10], and 
microneedles were used to enhance transdermal drug delivery for improved patient compliance, 
sustained release and avoidance of gastric irritation [11]. In recent years, significant efforts have been 
devoted to develop polymeric hydrogel delivery systems because of their potential over alternatives 
including versatility in design [12,13], tunability for various drug release profiles [14,15], high 
permeability and biocompatibility [16,17].

Hydrogels by definition are three-dimensional hydrophilic polymer networks that are capable 
of containing large amounts of water or biological fluids while maintaining their semisolid porous 
morphology [18]. The first hydrogels formulated specifically for the use in healthcare, poly(2-
hydroxyethyl methacrylate) (PHEMA), was developed by Wichterle and Lim in 1960 [19]. The 
hydrogel technologies since then are commonly used for a wide range of biomedical applications 
and clinical practice, including tissue engineering [20], regenerative medicine [21], controlled drug 
delivery [22], and smart diagnostics [23]. In the drug delivery applications, the benefits of hydrogel 
delivery systems are mainly pharmacokinetic [24]. By adjusting the mesh size of hydrogel networks, 
the diffusion coefficient of drug payload can be changed. The loaded drug can either be slowly 
eluted, maintaining a high local concentration in the surrounding tissues over an extended period 
to exert their actions, or it can be fast released to achieve a short-term high local concentration. 
Hydrogels are also soft and pliable in nature,which minimizes mechanical irritation and damage to 
the surrounding tissue after implantation, making them promising candidates for in vivo biomedical 
application [25]. 

Hydrogels can be classified as natural, synthetic or semisynthetic, according to the nature of 
their composite polymers. Synthetic polymers, such as poly(ethylene glycol)(PEG), poly(vinyl 
alcohol) (PVA), poly(2-hydroxyethyl methacrylate) (PHEMA), poly(acrylic acid) (PAA), 
poly(methyl acrylate) (PMA), polyacrylamide (PAM) and poly(N-isopropyl acrylamide) (NIPAM) 
have been used to form hydrogels with variable drug release properties and mechanical strengths 
[26]. However, most synthetic polymer hydrogels are limited in the use of medical applications 
because they are non-degradable in vivo. Natural polymers, especially extracellular matrices (ECM) 
fibrous proteins, such as elastin and collagen, exhibit many advantageous characteristics for tissue 
regeneration, controlled release of biomolecules or regenerative medicine. Compared to synthetic 
polymers, the ECM fibrous proteins are generally biocompatible and fully degradable in vivo, 
which is critical for many biomedical needs [16,17]. The incorporation of therapeutics into protein 
hydrogels are also relatively easier through diverse amino acid chemistries, or via the formation of 
well-defined supramolecular structures, such as β-sheets, α-helices and β-turns. Moreover, protein 
hydrogels can be designed genetically to contain functional domains for cell adhesion, growth factor 
binding and degradation through genetic protein engineering approaches without further chemical 
modification. These unique properties of protein-based hydrogels have made them valuable 
biomaterials in the development of controlled delivery system.

Recent trend in hydrogel design have revolutionized from static to stimuli-responsive system 
to address needs for controlled release systems [27]. These stimuli-responsive ‘smart’ hydrogels are 
capable of responding to environmental stimuli such as temperature, pH and certain biological 
signals with spatiotemporal precision.  For example, genetic engineered silk-elastin-like proteins 
were developed to form stimuli-responsive hydrogels via enzymatic crosslinking to form elastin 
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networks [28]. The resulting SELP hydrogels exhibited significant 
swelling ratios as well as significant reversible changes in optical 
transparency, mechanical properties and hydrogel pore size upon 
exposure to thermal triggers, showing great potential for swelling-
controlled release of drugs in various conditions. The development of 
dynamic protein hydrogel systems will open up new possibilities for 
the use of hydrogels as therapeutic vehicles for target delivery.  

Despite many advantageous properties, hydrogel therapeutics 
delivery systems also have several limitations. One set of major 
challenges relates to expanding the types of kinetic release profiles 
for long-term release applications. Other challenges include 
improvement in the delivery of hydrophobic molecules and more 
sensitive molecules such as proteins, antibodies, or nucleic acids 
which can be deactivated or unfolded by interactions with the 
hydrogel delivery vehicle. Progress on any or all of above challenges 
will greatly expand the potential of hydrogel therapeutics delivery 
systems to deliver designed drugs at a desired release rate and location 
in vivo.
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