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Relationship between Tropical Forest Biomass, Woody 
Volume and Backscattering Intensity of ALOS-2 SAR Data
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Abstract
The potential of Synthetic Aperture Radar (SAR) data based on ALOS-2 satellite operating in 
L-band radar was assessed for the estimation of biomass and woody volume in tropical dense forests 
in Vietnam by collecting in situ forest data in 2015. The effect of polarization and seasonality of the 
SAR data on the biomass and woody volume was analyzed. The combination of HH, HV, and HH/
HV variables using multivariate linear regression did not improve the estimation of biomass and 
woody volume compared to using the HV channel independently, as the HH and HH/HV variables 
were not statistically significant (p-value>0.05). The dry season HV polarization could explain 65% 
and 58% variation of the biomass and woody volume respectively in the tropical forest with the 
biomass and woody volume as high as 447 Mg/ha and 493 m3/ha respectively. The dry season HV 
backscattering intensity was highly sensitive to the biomass and woody volume compared to the 
rainy season backscattering intensity. The SAR data acquired in rainy season with humid and wet 
canopies were not very sensitive to the in situ biomass and woody volume. The strong dependence 
of the biomass and woody volume estimates with the season of SAR data acquisition confirmed that 
the choice of right season SAR data is very important for improving the satellite based estimates of 
the biomass and woody volume. We expect that the results obtained in this research will contribute 
to monitoring of forest biomass and woody volume in Vietnam and abroad.
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Introduction
Information on forest biomass and woody volume are essential for increasing understanding 

of the terrestrial carbon cycle and judicial management of forest resources. Forests sequestrate 
atmospheric carbon dioxide in the form of biomass during photosynthesis [1-3]. Therefore, forest 
biomass has an important role in the global carbon cycle [4-6]. Global total forest area is just over 
four billion hectares (31 per cent total land area of the Earth) and is unevenly distributed over 
the climatic regions. However, average forest area decreased by about 5.3 million hectares per 
year between 1999 and 2010; and deforestation is continuing everywhere [7-10]. When forests are 
destroyed, more carbon is added to the atmosphere which accelerates climate change. Deforestation 
and forest degradation contribute approximately 12-20 per cent of all greenhouse gas emissions 
[11,12]. The concentration of atmospheric carbon dioxide (CO2) has already surpassed 400 parts 
per million which is larger than the ecological safety level of 350 parts per million [13]. Accurate 
monitoring of forest biomass and CO2 sequestration rates are immensely important for increasing 
understanding of global carbon cycles, improving climate change forecasting models, and climate 
change mitigation and adaptation strategies [2,6,8,14-16]. Global monitoring of forest carbon is 
also urgently needed for the United Nation’s program on Reducing Emissions from Deforestation 
and Degradation (REDD+), a financial payment mechanism for environmental services [16,17]. 
However, estimating woody volume and biomass from satellite data is challenging due to the diverse 
nature of forests and tropical forests [6,8,18-20].

Satellite remote sensing technology has many advantages for biomass estimates over traditional 
field survey based methods, particularly at larger scales. Therefore, it has been used by many 
researchers for biomass and woody volume estimates [6,19,21]. Satellite based estimation of woody 
volume and biomass are based on optical, radar, and more recently lidar techniques. Limitations 
on optical data based biomass estimates have been reported by researchers such as saturation 
over large biomass regions, very low correlation, and difficulties in detecting vertical structure 
[6,11,15,22-25]. To overcome such limitations, some researchers have tried multi-angular remote 
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sensing based bi-directional reflectance data for retrieving canopy 
structural information [26,27]. Some studies have combined spectral 
and textural features for biomass estimates using very high spatial 
resolution data and improved the accuracy of biomass and woody 
volume estimates [19]. However, due to complexities associated with 
high biological diversity, dense forests, multi-layer canopies, and 
unavailability of seasonal data due to clouds, estimation of biomass 
over tropical regions have been more challenging, especially with the 
optical data [6,19,20,22,28,29]. Lidar sensors have performed excellent 
estimates even in forests with high biomass and woody volumes by 
directly measuring the structure of the forest, i.e., canopy height and 
vertical distribution [18,23,30-37]. However, large scale application 
of lidar data is not economically feasible at present [6,19,25].

Radar remote sensing from satellites has high potential for biomass 
estimates at large scale because of its penetrability through clouds, 
applicability with night time, coverage at large scale, availability of 
seasonal data, and lower saturation in dense forests [6,20,21,38-44]. 
The long-wavelength SAR satellite is expected to have much promise 
for estimates of forest biomass [2,42,43]. The backscattering intensity 
of L-band and P-band SAR data have demonstrated sensitivity to 
structure, cover, volume, and biomass of the forests penetrating into 
the branches and stems of trees [40,45-48]. A number of previous 
studies have shown an impressive relationship between the SAR data 
and biomass [28,39,48-54]. On the other hand, several researchers have 
reported saturation problems with the L-band SAR backscattering 
over high biomass regions. However the level of biomass and woody 
volume at which backscattering intensity saturates are varying 
among the researchers: 40 Mg/ha [55], 60 Mg/ha [52], 120 Mg/ha 
[56], 150 Mg/ha [51], 200 m3/ha [57], 150-200 Mg/ha [58], 136-182 
Mg/ha [59], 250 Mg/ha [60-63], 297 Mg/ha [64], 310m3/ha [65], 
357 Mg/ha [66]. The major techniques for SAR based estimates of 
woody volume and biomass attempted by a number of researchers 
so far are regression modelling [49,60,67,68], dual-wavelength SAR 
interferometry [47]; image texture analysis [69]; interferometric 
water cloud model [28], random volume over ground model [70], 
water cloud model [71], combination of forest structure and radiative 
transfer models [72],electromagnetic modelling [63], multivariate 
relevance vector regression [64]. SAR data have been used for 
estimating biomass and woody volume at different scales from local 
to regional/country level: pine plantation in Southwest Alabama [39], 
Mount Sharsta region of Northern California [73], plantation forest 
of the Landes forest in southwestern France [49], Brazilian Amazon 
[28,52] Nuuksio Natural Park in Southern Finland [57], Queensland 
in Australia [74], Mozambique in Zambézia province [68], Cambodia 
[58], and Cameroon [63]. However, the backscattering mechanisms 
in forests are very complex due to multi-level interaction of the 
scatterings with several horizontal and vertical components of the 
trees, and effect the environmental conditions. Different kinds of 
backscattering phenomena in forests such as diffused scattering from 
the ground, direct scattering from thin and dense vegetation parts, 
double bounce vegetation-ground interaction, direct backscattering 
from the canopy, volume scattering from within the forest canopy, 
and shadowing have been reported by researchers [38,61,75-78]. 
Backscattering intensity is also affected by a number of site conditions 
such as environmental temperatures [51,79], textures [80], moistures 
[81-86], roughness [81,83,87], terrain slopes [60,63,65, 88,89], forest 
stand age and canopy structure [69,90], forest species and cover 
[61,88,91-93]. As a result, potential of backscattering intensity for 
the estimation of forest biomass is influenced by the uncertainties 

coming from the heterogeneity of site conditions.

The Advanced Land Observing Satellite-2 (ALOS-2), a Japanese 
satellite launched in 2014, which operates in L-band radar and collects 
very high spatial resolution data (1-3 m per pixel) is considered useful 
technology for biomass and woody volume estimates particularly 
over dense tropical forests.

The collection of biometry data via field inventory in dense 
tropical forests is very difficult, time-consuming, and costly. The in 
situ biomass data calculated from incomplete sampling methods 
without representing the total forest, and lack of correct allometric 
equations to convert the field measured tree variables into biomass, 
and no validation and cross checks with repetitive measurements 
cannot correctly evaluate the potential of SAR data for biomass 
estimates. Moreover, the non-coincidence of the field inventory date 
and acquisition of the radar data is another challenge for deriving 
models for accurate estimation of the forest biomass.

Therefore, this research was conducted in a tropical dense forest 
to assess the current uncertainties associated with the estimation 
of biomass by collecting in situ biometry data by the authors. This 
research attempted to answer whether the ALOS-2 based SAR data 
are really capable of estimating the biomass and woody volume in 
such high biomass regions, and whether biomass estimates vary 
with the season of SAR data acquisition. Moreover, this research 
was conducted in Vietnam with more than 40% forest cover which 
is one of the nine countries chosen for implementing United 
Nations’ program on Reducing Emissions from Deforestation and 
Degradation (REDD+).

Study Area and Data
Study area

This research was carried out in Yok Don National Park, the 
largest national park in Vietnam which is located in the Central 
Highlands region. This park is very rich in biodiversity where 474 
vascular plant species have been recorded [94]. This park is one of 
the most important protected areas in Southeast Asia providing 
important habitat for conservation of globally endangered species 
such as Indochinese tiger and Asian elephant.

This park has two major types of forest: deciduous broadleaf forest 
and evergreen broadleaf forest [94-98]. The dominant tree species 
in the deciduous broadleaf forest are Dipterocarpus tuberculatus, 
Dipterocarpus obtusifolius, Terminalia tomentosa, and Shorea 
obtuse. The evergreen broadleaf forest mainly comprises of Michelia 
mediocris, Cinamomum iners, Syzygium zeylanicum, Syzygium 
wightianum, Garruga pierrei, Gonocaryum lobbianum, Schima 
superba, Camellia assamica, and Lithocarpus fenestratus. The forest 
inside the park has diverse types of soils including brown, red-yellow, 
and black soils [99]. This park contains relatively plain topography 
and is located at an altitude of 200-300 m above sea level [100]. The 
location map of the Yok Don National Park is shown in Figure 1.

The climate of this region is tropical monsoon type which has 
a well-defined dry season between October and April, and typical 
rainy season between May and November. The mean annual rain 
falls is 1540 mm, and mean monthly temperature is around 25°C. 
The well-defined distinction of the climate between the dry and rainy 
season found in this forest provides an ideal site to analyze how the 
backscattering intensity varies with the seasons, and to know how 
the seasonal variation of the backscattering intensity affects the 
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estimation of woody volume and biomass. Moreover, this forest with 
dense and multi-strata canopies consisting of diverse tree species in 
tropical monsoon setting provides an opportunity to analyze how 
the backscattering intensity is sensitive to large woody volume and 
biomass. The analysis on sensitivity of backscattering intensity is 
required for improving the SAR based estimates of the woody volume 
and biomass particularly in the dense and multi-strata tropical rain 
forests.

Acquisition and processing of ALOS-2 data
We used Synthetic Aperture Radar (SAR) data from ALOS-2 

satellite which has been operating since May 2014 and provides SAR 
data in L-band. We used ALOS-2 version 2.1 polarized SAR data in 
HH and HV polarizations with pixel resolution of 6.25 m and it was 
available as a geometrically corrected product. The Digital Number 

(DN) values of the SAR images in both the HH and HV polarizations 
were calibrated by calculating the backscattering intensity using the 
Equation (1) [101].

σo = 10xlog10(DN2)+CF               (1)

In Equation (1), the σo is the sigma-naught backscattering 
intensity in the units of decibels (dB), and CF is the calibration factor 
which is currently set as -83 [101]. We used two scenes of the ALOS-
2 data covering our study area and representing each of the rainy 
(October) and dry season (February). The details on the ALOS-2 SAR 
images used in this research are described in Table 1. Both dry and 
rainy season SAR images were used, acquired with the same off-nadir 
angle (32.9°) in descending modes in order to avoid bias related to 
observation angles.

Figure 1: Location map of the study area displaying the boundary of Yok Don National Park (yellow polygon) in Central Highlands region, Vietnam.

Figure 2: The distribution of the location of sample plots established during field survey over the RGB color composite images: (a) Dry season RGB image, and 
(b) Rainy season RGB image. The RGB color composite image was created by using the HH channel for red (R), HV channel for green (G), and the ratio HH/HV 
for blue (B).
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Methodology
In situ measurements

The sensitivity analysis of the backscattering intensity with 
different seasons for the estimation of forest structural parameters 
such as woody volume and biomass requires ground truth data. 
Therefore, the authors organized an intensive field campaign during 
dry season of April, 2015 to collect the ground truth data. Field survey 
is important for collecting in situ data required for accuracy analysis 
of the satellite based estimates.

The in situ measurements were conducted by establishing the 
sample plots according to the inventory guideline available for 
the Central Highlands region [102,103]. All 115 sample plots were 
established by meeting the criteria of representativeness of different 
forest types across the study areas. The authors carefully designed the 
sample plots in such a way that they were at least 100-m apart from 
trails, roads, streams, and rivers to avoid the signals from unwanted 
surface types for sensitivity analysis.

Each sample plot established during the forest inventory was 
(50mx50m) with an area of 0.25 ha. The authors measured the 
diameter at breast height (D) and total tree height (H) of all the trees 
larger than 5 cm diameter at breast height located inside the sample 
plots. The tree diameter and height were measured by using laser 
diameter and laser height instruments respectively. The central geo-
location (latitude and longitude) of each sample plot was recorded by 
using GPS instruments.

The authors also recorded the types of tree species during the field 
inventory following the Vietnam Flora book [104]. All species were 
recorded and the taxonomy used was the Flora of Vietnam book).
The sample plots represent 28.75 hectares forest area which is 0.02% 
of the total study area.

Several studies have focused on importance of careful selection 
of the sample plots by incorporating relatively homogenous areas 
and large sample plots [1,6,17,102,105-107]. Many researchers have 
also reported that the minimum size for forest plot should be 1 ha 
[108,109]. In the case that size of sample plots established based on 
national inventory guidelines are relatively smaller, the variation of 
the backscattering intensity was analyzed to choose the sample plots 
that represent large homogenous forests. The mean backscattering 
intensity of the HV polarization from a sample plot with the size of 
50mx50m, equivalent to 8x8 pixels of SAR image was analyzed with the 
mean backscattering of a plot with the size of 100mx100m equivalent 
to 16x16 pixels. If the backscattering ratio between two different plot 
sizes were near to 1 (0.75-1.25), the plots were considered to represent 
large homogenous forests. In this way, 77 representative plots out of 
115 plots in the field were chosen for the analysis.

The distribution of sample plots used in this research is shown 
in Figure 2 using RGB color composite of the SAR images. Distinct 
variation between the rainy season and dry season RGB images in 
Yok Don National Park were observed as demonstrated in Figure 2.

Estimation of biomass/woody volume
The authors converted the individual tree biometry data: 

diameter at breast height (D) and total tree height (H) measured 
during the forest inventory into Above Ground Biomass (AGB) using 
the allometric equations. We used separate allometric equations for 
calculating the AGB of the deciduous and evergreen forests (Tan Vu 
et al., 2012). The allometric equations used for calculating the AGB of 

deciduous and evergreen forest types are given in Equation (2) and 
Equation (3) respectively.

AGB = 0.14xD2.31                                    (2)

 AGB = 0.098xexp(2.08xLn(D)+0.71xLn(H)+1.12xLn(WD))            
     (3)

In Equation (2) and Equation (3), AGB is the above ground 
biomass of a tree in kilograms (kg); D is the diameter at breast height 
measured at 1.3-m above the ground level in meters (m); H is the 
total height of tree in meters (m); WD is the wood density of tree in 
tones dry matter per fresh cubic meters (ton/m3). The species-specific 
Wood Density (WD) data were obtained from the forest carbon 
measurement guidelines prepared by the IPCC [1]. The species-
specific wood density data were used for calculating the AGB in 
evergreen forests due to large number of tree species present in these 
forests with varying amount of AGB. The allometric equations of the 
AGB in Equation (1) and Equation (2) gives the total biomass of a tree 
including all the stems, branches and leaves.

The woody Volume (V) of each tree was calculated by using 
Equation (4) [2,14,102] which uses the basal area of a tree at breast 
height (G) in squared meters (m2), total tree height (H) in meters (m) 
and the conversion factor (F). The woody volume (V) in Equation (4) 
also includes the volume of branches and twigs, which is usually 10% 
of total woody volume (V) [102].

V = FxGxH                                (4)

Sensitivity analysis
We calculated the averages of the forest structural parameters: 

diameter at breast height (D), Basal Area (BA), tree height (H), 
density of trees (N), Above Ground Biomass (AGB), and woody 
volume (V) for representing each sample plot. The backscattering 
intensity from the SAR data was calculated as the mean of 8x8 pixels 
for each sample plot. In this way, we carried out the relationship 
between the woody volume/biomass and backscattering intensity. 
The sensitivity of the backscattering intensity on the biomass and 
woody volume was statistically analyzed by using simple linear 
regression and multivariate linear regression analysis. The coefficient 
of determination (R2) and Root Mean Square Error (RMSE) were 
used as the metrics for evaluating the relationships. The results of this 
analysis are presented in the section below.

Results and Discussions
Forest biometry results

The relationship between different canopy structural parameters 
was analyzed to confirm the accuracy of the field inventory based 
data. The comparison result is shown in Figure 3. The coefficient of 
determination (R2) between tree height (H) and diameter at breast 
height (D), density of trees (N) and diameter at breast height (D), 
density of trees (N) and tree height (H), woody volume (V) and Basal 
Area (BA), and Above Ground Biomass (AGB) and Basal Area (BA) 
were 0.71, 0.48, 0.41, 0.93, and 0.84 respectively. The above analysis 
shows for the purpose the clearly the structure of the forest in the 
study area. Though the calculation of woody volume (V) and Above 
Ground Biomass (AGB) relied on allometric equations suggested by 
different sources, the higher relationship (R2= 0.88) was obtained 
between them. Tropical forest is a complex mixture of heterogeneous 
trees species, hence the accuracy of in situ biomass/woody volume 
data are crucial for linking with the satellite based data.
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Effect of SAR polarization on forest biomass/volume
The sensitivity of biomass and woody volume with the 

backscattering intensity of the HH and HV polarizations for the 
dry season was analyzed using the coefficient of determination (R2) 
and Root Mean Square Error (RMSE). As shown in Figure 4, the 
HV polarization was highly related to both the biomass (R2=0.65, 
RMSE=57.75 Mg/ha) and woody volume (R2=0.58, RMSE=79.79 
m3/ha); whereas the HH polarization did not show a significant 
relationship with the above ground biomass (R2=0.35, RMSE=79.08 
Mg/ha), and woody volume (R2=0.32, RMSE=101.44 m3/ha).

Similarly, the sensitivity of biomass and woody volume with 
the backscattering intensity of the HH and HV polarizations for the 
rainy season is shown in Figure 5. The HV polarization was related to 
biomass (R2=0.41, RMSE=74.14 Mg/ha) and woody volume (R2=0.42, 
RMSE=93.79 m3/ha) better than the HH polarization for both the 
biomass (R2=0.21, RMSE=87.25Mg/ha) and woody volume (R2=0.17, 
RMSE=112.50 m3/ha).

The high sensitivity of the HV polarization towards biomass and 
woody volume was found for both the dry and rainy season SAR data. 
This result highlighted the importance of HV polarization for the 
estimates of biomass and woody volume. Similar results have been 
obtained by previous researchers with high sensitivity of the HV 
polarization with tree height and diameter [48,51,56].

Effect of SAR seasonality on biomass/volume
The sensitivity of the SAR data (HV and HH polarizations) 

acquired during dry season and rainy season on biomass and woody 

volume was analyzed. The relationship between woody volume/
biomass and dry season SAR data is shown in Figure 4; and the 
relationship between woody volume/biomass and rainy season SAR 
data is shown in Figure5. The dry season backscattering intensity of 
the HH and HV polarizations was highly sensitive to the biomass 
and woody volume than the rainy season backscattering intensity. 
The higher relationship between the dry season HV polarization 
and biomass (R2=0.65, RMSE=57.75 Mg/ha), and the woody 
volume (R2=0.58, RMSE=79.79 Mg/ha) was obtained. However, the 
relationship between the rainy season HV polarization and biomass 
was relatively lower (R2=0.41, RMSE=75.14 Mg/ha) than the dry 
season. The relationship between rainy season HV polarization and 
woody volume was also lower (R2=0.42, RMSE=93.79 m3/ha). This 
analysis suggests that dry season SAR data is more important for 
estimating the biomass/volume than the rainy season data. The effect 
of seasonality for the SAR data was clearly observed in this research.

We also analyzed multivariate linear regression between the SAR 
data (HH, HV, and HH/HV) and woody volume and biomass. For 
dry season SAR data, the adjusted coefficient of determination (R2) 
between the biomass and three independent variables (HH, HV, and 
HH/HV) was 0.66, however the p-value of the HH was 0.31 (>0.05)
and HH/HV variables was 0.30 (>0.05) which were not significant; 
whereas only the HV variable with p-value 3.6E-19 (<0.05) was 
significant. The R2 between the woody volume and three independent 
variables (HH, HV, and HH/HV) was 0.58 and the p-value of the HH 
was 0.14 (>0.05), and HH/HV variables was0.14 (>0.05) which were 
not significant; whereas only the HV variable with p-value 2.2E-15 

No. Observation date (time) Scene ID Polarizations Obs. angle Season

1 2014-10-05 (16:56:51) ALOS2019900240-141005-FBDR2.1GUA HH, HV 32.9° Rainy

2 2014-10-05 (16:56:51) ALOS2019900250-141005-FBDR2.1GUA HH, HV 32.9° Rainy

3 2015-02-22 (16:56:50) ALOS2040600240-150222-FBDR2.1GUA HH, HV 32.9° Dry

4 2015-02-22 (16:56:50) ALOS2040600250-150222-FBDR2.1GUA HH, HV 32.9° Dry

Table 1: Description of the ALOS-2 PALSAR-2 data used in this research.

Figure 3: Cross-comparison between different structural parameters: (a) tree height (H) and diameter at breast height (D), (b) density of trees (N) and diameter 
at breast height (D), (c) density of trees(N) and tree height (H), (d) woody volume (V) and basal area (BA), (e) above ground biomass (AGB) and basal area (BA), 
and (f) woody volume (V) and above ground biomass (AGB).
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(<0.05) was significant.

Similar results were obtained for the rainy season SAR data. 
Though the adjusted (R2) between the biomass, and three independent 
variables (HH, HV, and HH/HV) was 0.43, only the HV variable was 
statistically significant with p-value of 3.6E-10 (<0.05). Other HH 
(p-value 0.07) and HH/HV (p-value 0.07) variables did not show 

statistically significant relationship with biomass. While analyzing 
the multivariate linear regression between woody volume and SAR 
variables (HH, HV, and HH/HV) has R2=0.45 and p-value of the HH 
was 0.2 (>0.05) and HH/HV was 0.19 (>0.05) and only the p-value 
of HV was 3.6E-10 (<0.05) and 1.1E-09 (<0.05) respectively. From 
all results above, only the HV variable was statistically significant for 
both the dry and rainy season data. Therefore, the estimates of the 

Figure 4: The relationship between  biomass, woody volume, and backscattering intensity during dry season: (a) Biomass versus backscattering intensity (HV), (b) 
Woody volume versus backscattering intensity (HV), (c) Biomass versus backscattering intensity (HH), and (d) Woody volume versus backscattering intensity (HH).

Figure 5: The relationship between the woody volume, biomass, and backscattering intensity during rainy season: (a) Biomass  versus backscattering intensity 
(HV), (b) Woody volume versus backscattering intensity (HV), (c) Biomass versus backscattering intensity (HH), (d) Woody volume versus backscattering intensity 
(HH).
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woody volume and biomass could not improve by using multivariate 
linear regression in this research.

Validation results
We used above ground biomass and woody volume data from 

national forest inventory program of Vietnam in 2014. This data was 
provided by Forest Inventory and Planning Institute (FIPI) and The 
Ministry of Agriculture and Rural Development (MARD) for the 
validation of the results obtained in this research. For this purpose, 
22 sample plots data that were available in the same study areas 
were compared against the predicted biomass and woody volume. 
As shown in Figure 6, our model could explain 71% variation of the 
biomass (R2=0.71, RMSE=24.06 Mg/ha) and 67% variation of the 
woody volume (R2=0.67, RMSE=28.50 m3/ha).

Conclusion
In this research, the authors collected forest biometry data at the 

tropical forest conducting forest inventory in 2015. The sensitivity 
of the woody volume and biomass to the polarizations of ALOS-2 
SAR data, and to the season of the acquisition of the SAR data were 
analyzed.

The authors achieved a promising relationship between the 
ALOS-2 based HV polarization backscattering intensity and field 
measured biomass and woody volume since 65% variation in forest 
biomass and 58% variation in woody volume could be explained 
by the HV polarization data. The combination of the HH, HV, and 
HH/HV channels by multivariate linear regression did not improve 
the estimates of the biomass and woody volume than using HV 
channel independently since the HH and HH/HV variables were not 
statistically significant (p-value>0.05).

The study has found strong dependence of the biomass and woody 
volume estimates with the season of SAR data acquisition. None of 
the biomass and woody volume correlated with the rainy season HV 
polarization data as highly as the dry season HV polarization data. 
Therefore, this research concluded that the choice of right season 
in which SAR data is acquired is a very important consideration for 
satellite based estimates of the biomass and woody volume. In tropical 
forests where the dry and rainy season are well-defined as in case of 
our study area, the rainy season with frequent and plenty of rainfall 
and cloudy sky keeps the forest canopy wet and humid. Since the SAR 
backscattering intensity is highly sensitive to the surface moisture, the 
SAR data acquired in the rainy season is not very sensitive to the in 
situ biomass and woody volume. 

The national park as the study area in this research supports 
wider variation of the forests representative to a specific ecological 
zone therefore provides an important site for establishing the satellite 
based models for biomass and woody volume estimates, and has 
important implications for estimating the large amount of carbon 
stocks protected by the national parks. The relationship established 
between the ALOS-2 SAR data and biomass and woody volume in 
this research could contribute to the monitoring of the biomass and 
the woody volume in other regions of Vietnam and other counties 
as well. The authors expect that the results obtained in this research 
would be useful for promoting emission reduction programs in 
forestry sector, and achieving sustainable forest management goals.
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