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Abstract
Increasing energy demand, environmental pollution, and soaring CO2 emissions necessitate 
the exploitation of renewable sources of energy. Lignocellulosic biomass is a naturally abundant 
resource that can be considered as one of the promising environment-friendly renewable energy 
options. Biochar is a carbon-rich, porous solid produced by the thermal decomposition of biomass 
under anoxic conditions and at moderate temperatures; it is suitable for soil remediation and with 
some functionalization can be converted into functional materials, finding applications in catalysis 
for biofuel production. Biochar can be produced on a scale ranging from large industrial facilities 
to individual farms since it is a solid residue formed in the pyrolysis of biomass. How to use it 
effectively is a critical question for improving economic viability and environmental sustainability 
of biomass conversion technologies. Biochar production and applications for soil remediation and 
pollutant removal has been discussed and reviewed extensively. However, there are limited critical 
reviews on the biochar formation mechanism, functionalization of biochar materials for catalysis 
and biofuel production applications. Therefore, this study reviewed the current literature on the 
activities and advantages of biochar derived materials used in biofuel production. The preparation 
methods and prevailing reaction conditions affecting the catalytic activity of the biochar derived 
material along with their reusability aspect are discussed in this review.
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Introduction
Fossil fuels like coal, oil, and gas are good and convenient sources of energy, and they meet 

the energy demands of society very effectively. However, those fossil fuel resources are finite and 
not renewable. With growing evidence of global warming, decreasing crude-oil reserves, enhanced 
worldwide demand for fuels, increased concerns of climate change and air pollution from the use 
of fossil-based energy carriers, and political commitment, the focus has recently turned towards 
development and improved utilization of low-carbon energy technologies.

The low-carbon energy technology is an umbrella term used to describe a wide variety of energy 
technologies that produce significantly less CO2 than traditional fossil fuel-based systems and that 
are compatible with stabilizing global atmospheric CO2 concentration [1].  Biomass, on the other 
hand, has special appeal in this regard, as it is an abundant alternative solid fuel to the conventional 
fossil fuel and has an impact on the carbon emission that is close to neutral [2].The plants uptake the 
CO2 from the atmosphere, producing large amounts of biomass, which can be converted into bio-oil 
and biochar. The bio-oil, following upgrading treatments, is converted to various biofuels and used 
as an alternative to fossil fuels. It should be noted that the emission of CO2 from biofuels can be fixed 
by the plant again. Meanwhile, as a recalcitrant form of carbon, the biochar itself can be regarded as 
a carrier for long-term carbon storage [3-4].

Biochar has been generated from a range of agricultural and organic materials; it is the 
intermediate solid residue, which can be formed by several thermochemical processes including 
pyrolysis. Biochar is a carbon-rich, fine-grained, porous substance, but it can also contain some 
oxygen and hydrogen. It has a high porosity and surface area, high chemical stability, and is cost-
effective [5–7]. Besides the intrinsic nature of the biomass feedstock, pyrolysis process conditions 
could greatly affect the biochar quality and determine its resultant properties. Biochar contains 
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a high quantity of minerals and functional groups anchored on 
the surface, which make it suitable for soil remediation and with 
some functionalization can be converted into functional materials, 
finding applications in catalysis, energy storage and conversion, and 
environmental protection [3,8]. 

Biochar production and applications for soil remediation and 
pollutant removal have been discussed and reviewed extensively 
[9–12]. However, there are limited critical reviews on the biochar 
formation mechanism, functionalization of biochar materials for 
catalysis and biofuel production applications. With the development 
of biomass pyrolysis, increasing amount of biochar will be produced 
for applications. Therefore, the specific aim of the present study is 
to review and analyze the current literature and studies related to 
biochar produced from pyrolysis, characterization, and the activities 
of biochar derived material used in biofuel production.

Biochar from Biomass Pyrolysis
“Biochar” is a recently coined term emerging along with the 

growing interests in renewable fuel, soil amendment, and carbon 
sequestration. It is a high-carbon, fine-grained, porous substance, 
which is produced by thermal decomposition of biomass under 
oxygen-limited conditions and at relatively low temperatures (<700°C) 
[11,13].  That is the most standardized definition of biochar so far 
regulated by the International Biochar Initiative (IBI) guidelines.

It furthermore specifies the need for purposeful application 
of this carbonaceous material to the soil for both agricultural and 
environmental gains. This fact distinguishes biochar from charcoal, 
which is a carbon-rich solid product prepared via charring biomass 
and is used as a fuel source for producing energy, as an adsorbent 
material, or as a reducing agent in metallurgical processes [14-15]. 
Typically, biochar is produced as a solid by-product material in a dry 
carbonization process like pyrolysis. The properties of given biochar 
strongly depend on the characteristics of each process and also on the 
material to which the process is applied.

Biochar production
The most common method to produce biochar is pyrolysis, 

which can be dated to thousands of years ago. Pyrolysis is the 
thermochemical decomposition of biomass at a temperature between 
350-700 °C in the absence of oxygen. The decomposition process 
releases volatile species, while the carbon-rich solid, non-volatiles are 
collected as biochar. A portion of the gas-phase volatiles condenses 
into dark brown, viscous liquid phase termed bio-oil [16], and the 
remaining low molecular weight volatile compounds (e.g., CO, CO2, 
H2, CH4 and light hydrocarbons) remain in the gas phase called 
“non-condensable” gas. The physical process and chemical reactions 
occurring in pyrolysis are very complex and depend on the reactor 
conditions, heating rate, and the nature of the biomass. 

Depending on the reaction time, temperature, and heating rate 
the pyrolysis process is sub-divided to four categories: slow pyrolysis, 
intermediate pyrolysis, fast pyrolysis, and pyrolytic gasification. Three 
products are always produced, but the proportions can be varied over 
a wide range by adjustment of the process parameters. Lower process 
temperatures and longer vapor residence times favor the production 
of biochar. High temperatures and longer residence times increase 
biomass conversion to gas, and moderate temperatures and short 
vapor residence time are optimum for producing liquids. Figure1 
shows the product distribution obtained from different modes of 
pyrolysis, showing the considerable flexibility achievable by changing 

process conditions [17].

The two most common methods of pyrolysis are “fast” pyrolysis 
and “slow” pyrolysis. As shown in Table 1, slow pyrolysis, also called 
conventional carbonization, produces biochar by heating biomass at 
a low heating rate for a relatively long residence time. On the other 
hand, fast pyrolysis yields 60-75% bio-oil, 15-30% biochar and 10-
20% non-condensable gas, and can be done in seconds, whereas 
slow pyrolysis has the advantage that can retain up to 50% of the 
feedstock carbon in stable biochar [18], but takes up to several days 
to complete. Furthermore, the bio-oil and gas co products of these 
technologies can be produced on a large scale and they should find 
their applications in many fields.

Alternatively, microwave technology has recently been used to 
efficiently convert organic matter to biochar on an industrial scale, 
producing up to 50% biochar. Microwave-assisted pyrolysis has been 
explored as an effective tool to improve the quality of bio-oil, biochar 
and syngas for different biomass materials such as wood wastes, wheat 
straw, corn stover and sewage sludge [19–24]. Biochar produced 
from microwave-assisted pyrolysis has been reported to have higher 
surface area and pore volume than those from conventional heating 
processes [25–27].

Characterization of biochar
Pyrolysis process condition (principally temperature, heating 

rate, pressure, and residence time at the final temperature), and any 
post-pyrolysis changes caused by aging or treatment greatly effect 
on the biochar production, hence resulting in the formation of a 
final product with different physical and chemical characteristics. 
In addition to this, the intrinsic nature of the biomass feedstock also 
interacts with the rest of the variables in determining the properties 
of the produced biochar [28–29].
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Figure 1: Product spectrum from pyrolysis.

Slow pyrolysis Fast pyrolysis Pyrolytic 
Gasification

Heating rate (°C /
min) 5–7 300–800 -

Temperature (°C) 300–800 400–700 750–1000

Vapor residence time >1h 0.5–10 s < 2s

Main product biochar bio-oil syngas

Biochar yield (wt %) 35-50 15-30 20-Oct

Table 1: Characteristics of different pyrolysis processes and typical yields of 
biochar in these processes.
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It is critically important to characterize biochar because its 
characterization will play a vital role in determining their importance 
and application in the industry and environment. However, the 
relationships between biochar properties and their effects on 
enhancing performance in various applications are still not well-
understood. Although many papers have reported relationships 
between biochar properties and its respective production conditions, 
no universal relationship between the properties and process 
conditions has been well established. Biochar properties can be 
divided into chemical (such as proximate and elemental analysis, 
mineral content, polar surface functional groups and heating value) 
and physical (such as specific surface area, pore-size distribution, and 
morphology) [12].

Chemical properties and characterization of biochar: 
Concerning the chemical properties of biochar obtained by pyrolysis, 
the proximate analysis includes contents of volatile matters (VM), 
moisture, ash and fixed carbon (FC). The volatile content can be 
determined following ASTMD 3175-11 [30]. Energy content or 
higher heating value (HHV) is determined using a bomb calorimeter. 
The biochar pH is determined following ASTMD4972-01 [31].

Several analytical techniques can be applied to characterize the 
inorganic species of biochar: inductively coupled plasma atomic 
emission spectroscopy (ICP-AES), X-ray fluorescence (XRF), and 
X-ray diffraction (XRD). ICP-AES is able to determine the absolute 
concentration of inorganic elements (P, Al, Ca, Cr, Ni, Cu, Fe, 
K, Mg, Mn, Na, etc.) [32]. XRF spectrometry is used to determine 
the ash compositions in terms of weight fraction of oxides [33]. 
However, molecular-level analysis on the chemical structure of 
biochar organic matters is very limited. Most information on biochar 
organic structure is acquired by Fourier transform infrared (FT-IR) 
and Raman spectroscopy. FT-IR analyzes the chemical properties of 
biochar by assigning peaks of interest to functional groups based on 
characteristic absorption regions [34].

Biochar can be generated by pyrolysis of pure biomass 
components (cellulose, hemicelluloses or lignin) and whole biomass; 
it is theorized that lignin would undergo partial decomposition 
and hemicellulose and cellulose would undergo a series of thermal 
homolysis, hydrolysis, dehydration, and molecular rearrangement 
reactions to form a polymerized aromatic structure. 

High-temperature biochars tend to have greater concentrations 
of condensed aromatic carbon, while biochar produced by lower-
temperature pyrolysis may contain remnants of biopolymers. From 
a chemical composition point of view, biochars obtained at high 
heating rates are characterized by high oxygen content and low 
calorific value, probably as a result of the relatively short particle 
residence time [35]. Usually, the carbon content of a typical biochar 
is in the range of 45−60 wt %, the hydrogen content 2−5 wt %, and the 
oxygen content about 10−20% [36–37].

The ash content of biochar depends substantially on the feedstock. 
Some sources of biomass, such as corn stover, rice husks contain 
relatively high levels of Si, and after pyrolysis, the Si is concentrated in 
the biochar. Combustion of high Si biochars will cause scaling on the 
walls of combustion chambers and decrease the usable life of those 
chambers. Generally, softwood biochars tend to have low ash content; 
hardwood biochars have intermediate ash content, and biochars 
derived from corn or wheat stover typically have higher ash content. 
Low-ash biochars are also used in metallurgy and as a feedstock for 

production of activated carbon, which has many uses, such as an 
adsorbent to remove odorants from airstreams and both organic and 
inorganic contaminants from waste-water streams.

Pyrolysis temperatures also greatly influence the final inorganic 
element content of the biochar. It has been reported that the P, Ca, 
Mg, K, Fe, and Al content in the biochar derived from wheat straw 
increased significantly with increasing temperature [38]. This can be 
explained as follows: with the increase in the pyrolysis temperature, 
more volatile matter is formed and released into the bio-oil and gas 
phases. In contrast, most of the less-volatile inorganic species remain 
in the solid biochar phase [3].

Freshly made biochar is hydrophobic and contains few polar 
surface functional groups; however, on exposure to water and 
oxygen in soil environments, the surfaces of biochar oxidize, forming 
carboxyl and other oxygen-containing functional groups. The main 
contribution to the reactivity of biochar is the fact that the surface 
usually exhibits a range of hydrophilic and hydrophobic functional 
groups both acidic and basic [14].

Many properties of biochar are significantly influenced by the 
chemisorption of oxygen onto the carbon surface. Oxygen in the 
surface oxides can be found in the form of various surface organic 
functional groups. The surface functional groups are mainly derived 
from activation process, precursor, heat treatment, and post chemical 
treatment. Some studies already demonstrated that the surface 
functional groups anchored on/with carbon were found to be 
responsible for the variety in catalytic and physicochemical properties 
of the matter considered [39], [40]. Surface functional groups could 
be quantified by means of titrimetric techniques; the method was first 
proposed and established by Boehm [41].

Surface functionality can be investigated by means of Fourier 
transform infrared (FTIR) spectroscopy. There is an alteration in the 
aromatic structure of biochar samples in comparison with biomass 
samples. The peaks between 680 and 900 cm−1corresponding to an 
aromatic C-H stretching vibration that indicates the presence of 
adjacent aromatic hydrogen in biochar samples which is not seen in 
biomass samples [6,42].

The FTIR spectra of both biomass feedstock and biochars 
obtained at different pyrolysis peak temperatures are used to analyze 
the gradual loss of lignocellulosic functional groups (change in the 
O−H stretch peak around 3400 cm−1,which dominates the feedstock’s 
spectrum) [43]. Assignment of other spectral peaks of interest for 
biochar samples, including the aliphatic C−H stretch at 3000−2850 
cm−1, the aromatic C−H stretch around 3060 cm−1, and the various 
aromatic ring modes at 1590 and 1515 cm−1, was proposed by Sharma 
et al. [44]. The peaks characteristic of the carbonyl groups should 
appear in the range 1660−1725 cm−1. The exact position of the peaks 
depends on whether the carbonyl groupware in conjunction with the 
aromatic ring (position below1700 cm−1) or not (position above 1700 
cm−1) [15,44].

Surface functional groups also play an important role in the 
application of biochars as functional materials, e.g., catalysts, 
adsorbents, and electrode materials. Due to its highly heterogeneous 
composition, the surface chemistry of biochar is very variable [3].

Physical properties and characterization of biochar: Concerning 
the physical properties of biochar obtained by biomass pyrolysis, the 
structure of biochar can be analyzed using a broad suite of analytical 
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techniques. Regarding the morphological characterization, scanning 
electron microscopy (SEM) and transmission electron microscopy 
(TEM) are the most common techniques used to analyze the biochar 
particle structure and surface topography [45-46].

Surface area and pore structure can be analyzed using the 
Brunauer, Emmett and Teller (BET) method, in which N2 is the 
most widely used sorbate gas. If the biochar contains a large number 
of micropores, the surface area is estimated using CO2 isothermal 
adsorption method at 0oC. These methods are well-developed and 
used routinely for the characterization of the biochar textural features, 
such as surface area and porosity [46–47].

The physical properties and the surface morphology of biomass 
samples changed after carbonization. Biochar samples enriched 
in carbon contain several cracks and holes formed because of the 
evolution of volatile matter during carbonization. The extent of 
devolatilization has a significant effect on the characteristics of the 
produced biochar. As known, higher volatile matter release produces 
biochars with lower densities, higher porosities and significantly 
different pore structure [48].

Boateng and co-workers, and Mullen et al. reported relatively low 
BET surfaces areas (3.10−21.6 m2/g) for biochars formed from switch 
grass and corn stover in a fluidized bed reactor [49–51]. This result 
is expected because of the short residence time of solid particles. In 
addition to this, Brewer and co-workers also observed a very small 
particle size for biochar obtained from fast pyrolysis of switch grass 
[43]. This fact is mainly due to the small particle size of the feedstock 
(averaging around 1mm) usually required in fast pyrolysis systems, 
and probably, to the hypothesis that fast devolatilization might create 
very fragmented char structures [52]. 

The heating method also had a significant effect on the 
morphology of the biochar structure. Biochar produced from 
microwave-assisted pyrolysis has a significantly higher BET surface 
area (up to 76.3 m2/g compared to 0.33 m2/g for a sample from 
conventional heating), micropore area and pore volume than those 
produced from conventional heating. Zhu and co-workers studied 
the corn stover biochar generated from different pyrolysis conditions 
using microwave-assisted heating. The results showed the surface 
functional groups of biochar were significantly influenced by the 
pyrolysis temperature and residence time [53–54]. 

In microwave-assisted pyrolysis, moisture is vaporized from the 
depth of the particle prior to the organic contents being volatilized. 
The steam from vaporized water is swiftly released, and not only 
sweeping volatiles from the pores, but also creates preferential 
channels in the biochar, which in turn increases the biochar porosity 
[27]. In conventional pyrolysis, volatiles produced during pyrolysis 
are released from outer layer first, and the thermal decomposition 
of volatiles released from the sample is expected to increase as 
the reaction develops toward the center of the particle because of 
the slow heating rate [55]. Because of the cracking volatiles, it will 
deposit inside the pores and block them. However, the micropores of 
biochar produced from microwave-assisted pyrolysis are clean and 
have more pores due to the uniform release of the volatile matters 
across the whole article [19]. At low heating rate during pyrolysis, 
the inherited porosity of feedstock would allow volatiles to release 
without morphological changes [55]. However, higher heating rates 
quickly release the volatiles and modify the pore structure of biochar 
associated with increased yield of liquid and gas fractions [26,56]. 

Therefore, microwave-assisted pyrolysis can provide a new strategy 
for creating more porous biochars, which can be used in sorption 
applications or as a precursor for producing activated carbon [27].

Biochar used for Biofuel Production
The most appealing feature of biochar is the fact that it represents 

an inexpensive, sustainable and easy-produced process allowing 
the production of materials with extensive applications at a lower 
cost compared to materials from petrochemical or other chemical 
processes. Even though most of the applications are still in their 
infancy, biochar is already being used in many applications with extra 
ordinary effects [12]. Initial studies for the application of biochar 
was primarily focused on using it as a source of soil amendments 
and pollutant removal, which has been discussed and reviewed 
extensively [15]. However, the recent revolutions brought by the 
advancement in research and technology for the field of pyrolysis 
have broadened its applications. There are many applications of 
both the products including but not limited to energy production, 
catalysis, water purification, and biorefinery. In recent decades, the 
carbonaceous material has been widely used as a catalyst support 
due to its high chemical stability and easily modified structural and 
surface properties. However, the solid product of the biomass thermo 
chemical conversion, biochar, has rarely been exploited and is often 
discarded or burnt as a fuel. Biochar has properties similar to activated 
carbon and its surface chemistry can be modified [3].

Recent studies showed that the biochar could be developed and 
used as a catalyst in biodiesel production, catalytic esterification, 
biomass hydrolysis, bio-syngas reforming, and bio-oil upgrading 
[57–59].

Biodiesel production
Biodiesel (mono-alkyl esters of long chain fatty acids) is a 

promising alternative (or extender) to conventional petroleum-based 
diesel fuel. Biodiesel is produced from the reaction of a vegetable 
oil or animal fat (which are composed of complex mixtures of 
triglycerides and free fatty acids depending on the quality of the oil 
or tallow) with a low molecular weight alcohol, such as methanol, 
ethanol or propanol. Methanol is most frequently used as it is the 
least expensive alcohol [60]. Heterogeneous and homogeneous acid 
catalysts are commonly used foresterification and transesterification 
of vegetable oil or animal fat for biodiesel production. Heterogeneous 
solid acid catalysts showed lower production costs and easier 
operational processes as opposed to homogeneous acid or alkali 
catalysis in biodiesel production from waste cooking oil [61]. With 
appropriate treatment, biochar has proven to be a good precursor 
for producing heterogeneous acid catalysts (also called solid acid 
catalyst) [58,60,62]. Since 2006, carbon-based solid acid catalyst (e.g., 
d-glucose-based) gained much attention in esterification of fatty acids 
and transesterification of vegetable oils as two separate reactions [63–
66]. Recently the carbon-based catalyst has also been investigated for 
simultaneous transesterification and esterification of oil and free fatty 
acids (FFA) mixture [67].

From Dehkhoda’s group study, the biochar based catalyst 
was successfully produced through chemical activation of biochar 
followed by sulfonation with fuming sulfuric acid [60]. The prepared 
catalyst was tested for the simultaneous alkali-ester formation from 
a mixture of canola oil and oleic acid to mimic the waste vegetable 
oil feedstock. The catalyst showed promising yields (up to 48.1%) in 
three hour reaction time a thigh temperature/pressure conditions 
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(150°C/1.52MPa). The biochar-based catalyst can be recycled and 
reused successfully with a slight decrease in reaction yield (8%).

Joyleene et al. studied the biochar-based catalyst for 
transesterification of canola oil. The results showed that the catalyst 
carbonized at 675oC gave the highest catalytic performance, as 
evidenced by the yield from the transesterification reaction. The 
increasing rigidity of the carbon sheets activated at 875°C makes the 
incorporation of sulfonic acid groups more difficult [68]. However, the 
biochar-based catalyst showed poor reusability for transesterification 
of canola oil using methanol under high temperature/pressure 
conditions.

Dehkhoda et al. further explored the use of biochar as the support 
for a heterogeneous acid catalyst for biodiesel production leading to 
a green catalyst. Carbon-based solid acid catalysts were prepared by 
sulfonating pyrolysis biochar with concentrated or fuming sulfuric 
acids. Prepared catalysts were studied for their ability to catalyze 
transesterification of vegetable oils and esterification of free fatty 
acids. Results showed the catalyst with the highest surface area and 
acid density has the highest catalytic activity for the production of 
biodiesel from canola oil in the presence of methanol as the reagent 
[60]. Sulfonated biochar shows considerable potential for use as 
a catalyst in biodiesel production, especially in a context used to 
reducethe free fatty acid content of a vegetable oil feedstock.

Catalytic esterification
Glycerol is the main by-product in biodiesel synthesis by 

the transesterification of oil with methanol or ethanol. Glycerol 
is a renewable feedstock, which can be converted into valuable 
chemicals [69–70]. Glycerol is a highly functional molecule and can 
undergo oxidation, carbonylation, hydrogenolysis, esterification and 
etherification yield useful commodity chemicals [71–76].

The esterification of glycerol with acetic acid is one of the 
important reactions to synthesize glycerol acetins, which are known 
for their fuel additive properties. Glycerol acetylation has been studied 
widely using different heterogeneous catalysts, such as Amberlyst and 
niobic acid, or heteropoly acids [77–78].

Mahammad and co-workers studied the biochar from pyrolysis 
of Karanja (Pongamiapinnata) seed shells [79].  The catalytically 
active biochar was used directly as an acid catalyst without any 
functionalization/treatment for the esterification of glycerol with 
acetic acid. The acidity of the biochar depended on the carbonization 
temperature. The biochar obtained at 400oC possessed moderate to 
strong acidic sites. These catalysts showed an excellent activity for 
the esterification of glycerol under mild reaction conditions, and the 
catalyst carbonized at 400°C showed the highest activity among all 
the catalysts. The conversion and selectivity for glycerol acetylation 
depended on the reaction parameters. The biochar catalyst can be 
reused with consistent activity.

Biomass hydrolysis
Glucose is expected as a renewable feedstock molecule, which 

can be efficiently converted into various chemicals, fuels, foods, and 
medicines [80–82]. Therefore, the cellulose hydrolysis into glucose 
is a key process for the beneficial use of cellulose. Biochar-based 
solid acid materials also act as efficient catalysts for the hydrolysis of 
biomass [83–85].

The application of carbon solid acids in cellulose hydrolysis was 
first reported in 2008 [86]. The catalytic hydrolysis of cellulose with 

carbon solid acids is similar to saccharification using concentrate H2SO4 
but different from enzymes that hydrolyze cellulose consecutively. 
Carbon solid acid attacks both the chain ends and the random inter-
chain components of cellulose molecules [83,87]. Although carbon 
solid acids are similar to sulfuric acid in catalysis mechanisms, the 
carbon solid acid catalysts show a significantly higher yield of glucose 
than sulfuric acid. Besides property parameters of carbon solid acid 
catalysts, other factors affect the hydrolysis process including the 
amount of water, temperature, biomass amount, catalyst amount, 
and the ratio of biomass to the catalyst.

A new carbon solid acid based on the biochar from the pyrolysis 
process of biomass and sulfuric acid was developed by Li and co-
workers’ group. The biochar solid acid showed higher hydrolysis 
activity as well as selectivity of xylose and glucose than sulfuric acid. 
The biochar solid acid also generated less soluble lignin-derived 
products than sulfuric acid [88].

Hemicellulose can be used as a bio/chemical building block but 
requires hydrolysis of monomeric carbohydrates. Hemicellulose 
does not have as tight crystal structure as cellulose. As a result, 
hemicellulose in biomass is easier to hydrolyze to reducing sugars 
such as xylose and galactose with carbon solid acid [89]. In Ormsby 
and Kastner’s study, solid acid carbon catalysts generated from slow 
pyrolysis biochar were demonstrated to hydrolyze hemicellulose [90]. 
An 85% conversion of xylan was observed within 2h using the biochar 
catalyst, compared to 57% at 24h for activated carbon (7.7g/L, 120oC). 
H2SO4 was used to activate the biochar via sulfonation process, 
increasing surface area and pore structure, and attached sulfonic acid 
groups that were responsible for catalytic hydrolysis. These results 
demonstrated the potential of using solid acid catalysts derived 
from biochar to replace expensive and unrecoverable enzymes in 
the lignocellulosic biorefinery, targeted at hemicellulose hydrolysis if 
catalytic deactivation can be prevented.

Jiang and co-workers reported that lignocellulosic biomass (from 
corn crops) can be effectively hydrolyzed to yield soluble sugars using 
solid acids based on corn crop biochar [91]. At mild temperatures 
(110−140°C) under microwave irradiation, the cellulose and 
hemicellulose in the corncob biomass can be decomposed into the 
corresponding sugars. The maximum yields of glucose, xylose, and 
arabinose reached 34.6%, 77.3% and 100%, respectively. The catalyst 
could be reused three times without a significant decrease in catalytic 
activity.

Tar decomposition 
Biomass gasification produces syngas which can be utilized 

for fuels and power production. One of the major problems in 
utilizing syngas for industrial applications is the presence of high 
concentrations of tars formed during gasification.

Tars can be defined as the large aromatic hydrocarbons produced 
under thermal or partial-oxidation regimes having a molecular 
weight higher than benzene [92]. Although the compositions and 
amount of tar compounds vary with the type of gasifiers, gasification 
conditions and feedstock type, the most commonly reported tar 
compounds in syngas are benzene, toluene, naphthalene, styrene, 
phenol and other polyaromatic hydrocarbons (PAH) [93–94]. The 
traditional methods of hot syngas cleaning include filtration, water 
scrubbing, thermal cracking and catalytic cracking [95–96]. Catalytic 
removal or transformation of tar to synthesis gas components is the 
most practical method of solving this problem compared to physical 
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separation or thermal treatment of the tar. A wide range of catalysts 
has been studied for tar removal including, Ni supported catalysts 
(Ni/Al2O3 and Ni/CeO2/Al2O3), dolomite, olivine, zeolites and carbon 
supported catalysts [97].

Biochar reportedly removes tar components via a catalytic 
mechanism [98]. Biochar generated from slow pyrolysis of pine bark 
at 950°C was studied by Mani’s group as a potential low-cost catalyst 
to decompose a model tar compound, toluene [93]. A fractional 
conversion of 94% toluene was achieved via the biochar catalyst and 
the activation energy was reduced by four-fold compared to thermal 
cracking. Benzene was detected as an intermediate compound during 
catalytic cracking of toluene with a selectivity of up to 28% at 900°C.

Abu El-Rub et al. compared the activity of a biomass-
derived biochar to other catalysts that are commonly used for tar 
decomposition, including calcined dolomite, olivine and nickel 
catalyst [98]. The biochar was produced by pyrolysis of pine wood at 
500°C. Pheno land naphthalene were used as tar models and the tests 
were carried out in the presence of CO2 (6 vol. %), H2O (10 vol. %) 
and N2 (balance) at 700 and 900°C. The biochar was found to be more 
active for naphthalene conversions than other catalysts tested [99].

Recent research indicates that biochar catalytically removes tar 
components partly due to the presence of surface alkali metals such 
as Na, Ca, K and potentially Fe [93,98]. However, tar removal rates 
using biochar are lower than metal supported catalysts, such as 
Ni/olivine and Ni/dolomite [99]. Attaching an active metal to the 
biochar surface may improve biochar catalytic performance. Kastner 
and co-workers reported iron supported biochar catalysts were used 
to decompose toluene, a model tar compound, over a temperature 
range of 600-900°C. Toluene conversion and decomposition rates 
increased linearly with increasing temperature and catalyst loading 
from 600 to 700°C [97].

Bio-Syngas reforming
The gaseous product of biomass thermochemical conversion is 

bio-syngas, a composite gas consisting of CO, H2, CO2 and volatile 
hydrocarbons. Recently, there has been considerable research 
towards converting bio-syngas into alcohol, hydrocarbons, and 
ethers for use as a fuel [100–103]. It is crucial to select the correct 
catalyst to promote the syngas reforming process. In recent decades, 
the carbonaceous material has been widely used as a catalyst support 
due to its high chemical stability and easily modified structural and 
surface properties [104]. Biochar is a low cost and renewable carbon 
source that has great potential for application as a catalyst support. 
Yan et al. used biochar as the support material for the synthesis of 
carbon-encapsulated iron nanoparticles. And it showed a high 
activity for the Fischer–Tropsch synthesis from bio-syngas [105].

Wang and his co-workers reported the utilization of the gaseous 
and solid products of biomass thermochemical conversion for a 
methanation process [106]. Biochar derived from the fast pyrolysis of 
lauan was activated to develop its pore structure and used as acatalyst 
support in the methanation of bio-syngas. Experimental results 
showed that the activated biochar provided a large BET surface area 
to ensure the high dispersity of Ru on the catalyst support.

To study the possibility of directly converting biogas to syngas, 
Dominguez et al used pyrolyzed bio-char pellets from coffee hulls 
as a potassium-rich catalyst during gasification of a mixture of CH4 
and CO2 (1:1 ratio) [25]. The study indicated that the gasification of 
CH4 to H2 increased with high conversion of CH4 being achieved. In 

addition, the addition of biochar may potentially lead to hydrogen 
formation during pyrolysis as it contains catalytic inorganic minerals 
[107–110].

Catalytic pyrolysis and bio-oil upgrading
In recent years, increasing attention has been focused on 

upgrading the composition and qualities of the bio-oil product by 
means of the addition of a catalyst (in situ upgrading) [111–112]. 
Catalytic upgrading the volatiles prior to their condensation is 
currently considered as the most promising method to minimize 
the negative characteristics of bio-oil [113]. During the catalytic 
upgrading process, the moisture and oxygen contents of bio-oil are 
minimized; the molecular weight is reduced, and some bio-oil mass is 
reduced in favor of char and gaseous species [114]. The ideal catalyst 
should be highly active, selective to particular products, resistant to 
deactivation, readily recycled and cheap.

Jinet al. investigated the potential for upgrading pyrolysis vapors 
from raw wood chips using bio-chars (from red oak bark and switch 
grass) and its effects on the yield and composition of various pyrolysis 
products. The vapor-upgrading process significantly decreased the 
carbon yield in the bio-oil when switch grass biochar was used for 
co-processing. The lost mass of bio-oil ended-up in the gaseous phase 
as reflected in an increased content of carbon dioxide and carbon 
monoxide [107]. 

Ren and his co-workers investigated the influences of biochar as a 
catalyst in biomass pyrolysis and bio-oil upgrading using microwave 
assisted heating [47]. The biochar catalyst enhanced the syngas and 
improved the bio-oil quality in biomass pyrolysis. The bio-oil chemical 
profile from catalytic pyrolysis and bio-oil upgrading over biochar 
catalysts was simplified to phenols and hydrocarbons, and their 
concentrations were increased with the increase of biochar catalyst 
loadings. High-quality syngas richened in H2, CO, and CH4 was also 
obtained for biomass catalytic pyrolysis over biochar catalysts. These 
results indicated that biochar might be a potential cheap catalyst in 
biomass conversion and bio-oil upgrading

Conclusions
Recent studies on biochar formation, characterization, 

functionalization of biochar materials for catalysis and biofuel 
production applications, are discussed. Pyrolysis derived biochar-
based functional materials exhibit favorable catalytic performance 
in different reactions for biofuel production including catalytic 
transesterification/esterification, biomass hydrolysis, tar 
decomposition, biogas reforming and bio-oil upgrading. However, 
the performance of biochar-based catalysts is still greatly limited in 
terms of catalytic selectivity and stability due to the complex surface 
chemistry and heterogeneity. The relationship between the chemical 
and physical properties of biochar and biochars’ applicability in 
different fields is still poorly understood and it is still difficult to 
establish process conditions to produce biochars with desired 
characteristics. 

Expanded research efforts will provide solutions to those 
problems in the near future. To help advance the application of 
biochar for advanced biofuel production, it is critical that details 
about the properties of the biochar, the feedstock type and conditions 
used for making the biochar are reported to establish the appropriate 
process conditions for producing biochars with more desirable 
characteristics. 
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Challenges related to the application of biochar on biofuel 
production remain and have to be addressed in the future research. 
It believes that the rapidly growing and strong interest in biochar will 
bring biochar research and application into a new stage.
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